Suppr超能文献

将单激发子空间与[公式:见正文]融合。

Fusing the single-excitation subspace with [Formula: see text].

作者信息

Geller Michael R

机构信息

Center for Simulational Physics, University of Georgia, Athens, GA 30602 USA.

出版信息

Sci Rep. 2021 Jan 11;11(1):402. doi: 10.1038/s41598-020-79853-3.

Abstract

There is a tremendous interest in developing practical applications for noisy intermediate-scale quantum processors without the overhead required by full error correction. Near-term quantum information processing is especially challenging within the standard gate model, as algorithms quickly lose fidelity as the problem size and circuit depth grow. This has lead to a number of non-gate-model approaches such as analog quantum simulation and quantum annealing. These come with specific hardware requirements that are different than that of a universal gate-based quantum computer. We have previously proposed an approach called the single-excitation subspace (SES) method, which uses a complete graph of superconducting qubits with tunable coupling. Without error correction the SES method is not scalable, but it offers several algorithmic components with constant depth, which is highly desirable for near-term use. The challenge of the SES method is that it requires a physical qubit for every basis state in the computer's Hilbert space. This imposes exponentially large resource costs for algorithms using registers of ancillary qubits, as each ancilla would double the required graph size. Here we show how to circumvent this doubling by leaving the SES and fusing it with a multi-ancilla Hilbert space. Specifically, we implement the tensor product of an SES register holding "data" with one or more ancilla qubits, which are able to independently control arbitrary [Formula: see text] unitary operations on the data in a constant number of steps. This enables a hybrid form of quantum computation where fast SES operations are performed on the data, traditional logic gates and measurements are performed on the ancillas, and controlled-unitaries act between. As example applications, we give ancilla-assisted SES implementations of quantum phase estimation and the quantum linear system solver of Harrow, Hassidim, and Lloyd.

摘要

人们对开发实用的嘈杂中型量子处理器应用程序有着浓厚兴趣,且无需全误差校正所需的开销。在标准门模型中,近期量子信息处理尤其具有挑战性,因为随着问题规模和电路深度的增加,算法的保真度会迅速下降。这导致了一些非门模型方法,如模拟量子模拟和量子退火。这些方法有特定的硬件要求,与基于通用门的量子计算机不同。我们之前提出了一种称为单激发子空间(SES)方法,它使用具有可调耦合的超导量子比特的完全图。没有误差校正,SES方法是不可扩展的,但它提供了几个具有恒定深度的算法组件,这对于近期使用非常理想。SES方法的挑战在于,它需要为计算机希尔伯特空间中的每个基态配备一个物理量子比特。对于使用辅助量子比特寄存器的算法来说,这会带来指数级的巨大资源成本,因为每个辅助量子比特会使所需的图大小翻倍。在这里,我们展示了如何通过离开SES并将其与多辅助量子比特希尔伯特空间融合来规避这种翻倍。具体来说,我们实现了一个持有“数据”的SES寄存器与一个或多个辅助量子比特的张量积,这些辅助量子比特能够在恒定步数内独立控制对数据的任意[公式:见原文]酉操作。这实现了一种混合形式的量子计算,其中对数据执行快速的SES操作,对辅助量子比特执行传统逻辑门和测量,并且受控酉操作在它们之间起作用。作为示例应用,我们给出了量子相位估计以及哈罗、哈西迪姆和劳埃德的量子线性系统求解器的辅助量子比特辅助的SES实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c05/7801700/1ac07df8420b/41598_2020_79853_Fig1_HTML.jpg

相似文献

1
Fusing the single-excitation subspace with [Formula: see text].
Sci Rep. 2021 Jan 11;11(1):402. doi: 10.1038/s41598-020-79853-3.
2
Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits.
Natl Sci Rev. 2021 Jan 21;9(1):nwab011. doi: 10.1093/nsr/nwab011. eCollection 2022 Jan.
3
Dual-rail encoding with superconducting cavities.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2221736120. doi: 10.1073/pnas.2221736120. Epub 2023 Oct 6.
4
Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms.
Phys Rev Lett. 2020 Sep 18;125(12):120504. doi: 10.1103/PhysRevLett.125.120504.
5
Implementation of a Toffoli gate with superconducting circuits.
Nature. 2011 Dec 14;481(7380):170-2. doi: 10.1038/nature10713.
6
A two-qubit logic gate in silicon.
Nature. 2015 Oct 15;526(7573):410-4. doi: 10.1038/nature15263. Epub 2015 Oct 5.
7
8
Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits.
Phys Rev Lett. 2020 Mar 27;124(12):120501. doi: 10.1103/PhysRevLett.124.120501.
9
Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
Sci Rep. 2022 Apr 16;12(1):6379. doi: 10.1038/s41598-022-10339-0.
10
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Nature. 2014 Apr 24;508(7497):500-3. doi: 10.1038/nature13171.

本文引用的文献

1
Quantum supremacy using a programmable superconducting processor.
Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23.
2
Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience.
Sci Rep. 2019 Mar 18;9(1):4778. doi: 10.1038/s41598-019-41324-9.
3
Solving Systems of Linear Equations with a Superconducting Quantum Processor.
Phys Rev Lett. 2017 May 26;118(21):210504. doi: 10.1103/PhysRevLett.118.210504.
4
Qubit Architecture with High Coherence and Fast Tunable Coupling.
Phys Rev Lett. 2014 Nov 28;113(22):220502. doi: 10.1103/PhysRevLett.113.220502. Epub 2014 Nov 26.
5
Experimental quantum computing to solve systems of linear equations.
Phys Rev Lett. 2013 Jun 7;110(23):230501. doi: 10.1103/PhysRevLett.110.230501. Epub 2013 Jun 6.
8
Coherent Josephson qubit suitable for scalable quantum integrated circuits.
Phys Rev Lett. 2013 Aug 23;111(8):080502. doi: 10.1103/PhysRevLett.111.080502. Epub 2013 Aug 22.
9
Preconditioned quantum linear system algorithm.
Phys Rev Lett. 2013 Jun 21;110(25):250504. doi: 10.1103/PhysRevLett.110.250504. Epub 2013 Jun 18.
10
Quantum algorithm for linear systems of equations.
Phys Rev Lett. 2009 Oct 9;103(15):150502. doi: 10.1103/PhysRevLett.103.150502. Epub 2009 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验