Suppr超能文献

展示用于近期量子算法的连续双量子比特门集。

Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms.

作者信息

Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Zijun, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Yu, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M

机构信息

Department of Physics, University of California, Santa Barbara, California 93106, USA.

Google Research, Santa Barbara, California 93117, USA.

出版信息

Phys Rev Lett. 2020 Sep 18;125(12):120504. doi: 10.1103/PhysRevLett.125.120504.

Abstract

Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, θ, and a controlled-phase gate that generates an arbitrary conditional phase, ϕ. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other fSim gates spread evenly across the entire fSim(θ,ϕ) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8×10^{-3} per fSim gate.

摘要

量子算法为材料科学和化学中的计算问题提供了显著的加速。然而,这些算法的任何近期实现都需要进行优化,以适应现有有噪声硬件提供的有限资源。在此,利用gmon量子比特的可调耦合,我们展示了一种连续两比特门集,与标准分解相比,它可以将电路深度降低三倍。我们实现了两个门族:一个用于获得任意交换角θ的类虚交换(iSWAP-like)门,以及一个用于生成任意条件相位ϕ的受控相位门。使用这些门中的各一个,我们可以在激发保持子空间内执行任意两比特门,从而实现所谓的费米子模拟(fSim)门集的完整实现。我们对类iSWAP门族和受控相位门族以及均匀分布在整个fSim(θ,ϕ)参数空间中的525个其他fSim门的保真度进行了基准测试,每个fSim门实现了纯度受限的平均两比特泡利误差为3.8×10^{-3}。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验