Suppr超能文献

具有梯状结构的多层石墨烯中的高效机械应力传递

Efficient Mechanical Stress Transfer in Multilayer Graphene with a Ladder-like Architecture.

作者信息

Sgouros Aristotelis P, Androulidakis Charalampos, Tsoukleri Georgia, Kalosakas George, Delikoukos Nikos, Signetti Stefano, Pugno Nicola M, Parthenios John, Galiotis Costas, Papagelis Konstantinos

机构信息

School of Chemical Engineering, National Technical University of Athens (NTUA), Athens 15780, Greece.

Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras 26504, Greece.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 27;13(3):4473-4484. doi: 10.1021/acsami.0c18774. Epub 2021 Jan 12.

Abstract

We report that few graphene flakes embedded into polymer matrices can be mechanically stretched to relatively large deformation (>1%) in an efficient way by adopting a particular ladder-like morphology consisting of consecutive mono-, bi-, tri-, and four-layer graphene units. In this type of flake architecture, all of the layers adhere to the surrounding polymer inducing similar deformation on the individual graphene layers, preventing interlayer sliding and optimizing the strain transfer efficiency. We have exploited Raman spectroscopy to quantify this effect from a mechanical standpoint. The finite element method and molecular dynamics simulations have been used to interpret the above experimental findings. The results suggest that a step pyramid-like architecture of a flake can be ideal for efficient loading of layered materials embedded into a polymer and that there are two prevailing mechanisms that govern axial stress transfer, namely, interfacial shear transfer and axial transmission through the ends. This concept can be easily applied to other two-dimensional materials and related van der Waals heterostructures fabricated either by mechanical exfoliation or chemical vapor deposition by appropriate patterning. This work opens new perspectives in numerous applications, including high volume fraction composites, flexible electronics, and straintronic devices.

摘要

我们报道,通过采用由连续的单、双、三、四层石墨烯单元组成的特定梯状形态,嵌入聚合物基体中的少数石墨烯薄片能够以有效的方式被机械拉伸至相对较大的变形(>1%)。在这种薄片结构中,所有层均与周围聚合物粘附,在各个石墨烯层上引起相似的变形,防止层间滑动并优化应变传递效率。我们利用拉曼光谱从力学角度对这种效应进行了量化。有限元方法和分子动力学模拟已被用于解释上述实验结果。结果表明,薄片的阶梯金字塔状结构对于嵌入聚合物中的层状材料的有效加载可能是理想的,并且存在两种主导轴向应力传递的机制,即界面剪切传递和通过端部的轴向传递。通过适当的图案化,这一概念可以轻松应用于通过机械剥离或化学气相沉积制备的其他二维材料及相关范德华异质结构。这项工作为众多应用开辟了新的前景,包括高体积分数复合材料、柔性电子器件和应变电子器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验