Suppr超能文献

结构-活性关系及 SR18292()的生物学研究,一种胰高血糖素诱导的葡萄糖产生的抑制剂。

Structure-Activity Relationship and Biological Investigation of SR18292 (), a Suppressor of Glucagon-Induced Glucose Production.

机构信息

Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States.

Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.

出版信息

J Med Chem. 2021 Jan 28;64(2):980-990. doi: 10.1021/acs.jmedchem.0c01450. Epub 2021 Jan 12.

Abstract

Despite a myriad of available pharmacotherapies for the treatment of type 2 diabetes (T2D), challenges still exist in achieving glycemic control. Several novel glucose-lowering strategies are currently under clinical investigation, highlighting the need for more robust treatments. Previously, we have shown that suppressing peroxisome proliferator-activated receptor gamma coactivator 1-alpha activity with a small molecule (SR18292, ) can reduce glucose release from hepatocytes and ameliorate hyperglycemia in diabetic mouse models. Despite structural similarities in to known β-blockers, detailed structure-activity relationship studies described herein have led to the identification of analogues lacking β-adrenergic activity that still maintain the ability to suppress glucagon-induced glucose release from hepatocytes and ameliorate hyperglycemia in diabetic mouse models. Hence, these compounds exert their biological effects in a mechanism that does not include adrenergic signaling. These probe molecules may lead to a new therapeutic approach to treat T2D either as a single agent or in combination therapy.

摘要

尽管有许多用于治疗 2 型糖尿病 (T2D) 的药物疗法,但在实现血糖控制方面仍然存在挑战。目前有几种新的降糖策略正在临床研究中,这突显了对更有效治疗方法的需求。此前,我们已经表明,用一种小分子(SR18292)抑制过氧化物酶体增殖物激活受体 γ 共激活因子 1-α 的活性可以减少肝细胞中的葡萄糖释放,并改善糖尿病小鼠模型中的高血糖症。尽管 与已知的β受体阻滞剂在结构上有相似之处,但本文所述的详细的结构-活性关系研究导致了鉴定出缺乏β肾上腺素能活性的类似物,这些类似物仍然能够抑制胰高血糖素诱导的肝细胞葡萄糖释放,并改善糖尿病小鼠模型中的高血糖症。因此,这些化合物通过不包括肾上腺素能信号的机制发挥其生物学作用。这些探针分子可能为治疗 T2D 提供一种新的治疗方法,无论是作为单一药物还是联合治疗。

相似文献

1
Structure-Activity Relationship and Biological Investigation of SR18292 (), a Suppressor of Glucagon-Induced Glucose Production.
J Med Chem. 2021 Jan 28;64(2):980-990. doi: 10.1021/acs.jmedchem.0c01450. Epub 2021 Jan 12.
2
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation.
Cell Chem Biol. 2024 Oct 17;31(10):1772-1786.e5. doi: 10.1016/j.chembiol.2024.09.001. Epub 2024 Sep 27.
4
Small molecule IVQ, as a prodrug of gluconeogenesis inhibitor QVO, efficiently ameliorates glucose homeostasis in type 2 diabetic mice.
Acta Pharmacol Sin. 2019 Sep;40(9):1193-1204. doi: 10.1038/s41401-018-0208-2. Epub 2019 Mar 4.
7
9
PPP1R3C mediates metformin-inhibited hepatic gluconeogenesis.
Metabolism. 2019 Sep;98:62-75. doi: 10.1016/j.metabol.2019.06.002. Epub 2019 Jun 8.
10
Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.
Diabetes. 2016 Jan;65(1):62-73. doi: 10.2337/db15-0249. Epub 2015 Sep 4.

引用本文的文献

1
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation.
Cell Chem Biol. 2024 Oct 17;31(10):1772-1786.e5. doi: 10.1016/j.chembiol.2024.09.001. Epub 2024 Sep 27.
2
Gold-Catalyzed "Back-to-Front" Synthesis of 4-Silyloxyindoles.
Org Lett. 2024 Jun 14;26(23):4969-4974. doi: 10.1021/acs.orglett.4c01581. Epub 2024 Jun 5.
3
Loss of TRIM67 Attenuates the Progress of Obesity-Induced Non-Alcoholic Fatty Liver Disease.
Int J Mol Sci. 2022 Jul 5;23(13):7475. doi: 10.3390/ijms23137475.

本文引用的文献

1
Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes.
Cell. 2017 Mar 23;169(1):148-160.e15. doi: 10.1016/j.cell.2017.03.001.
2
Regulation of glucose metabolism from a liver-centric perspective.
Exp Mol Med. 2016 Mar 11;48(3):e218. doi: 10.1038/emm.2015.122.
3
Molecular pathophysiology of hepatic glucose production.
Mol Aspects Med. 2015 Dec;46:21-33. doi: 10.1016/j.mam.2015.09.003. Epub 2015 Nov 5.
4
Beta-Blockers: Current State of Knowledge and Perspectives.
Mini Rev Med Chem. 2016;16(1):40-54. doi: 10.2174/1389557515666151016125948.
5
Metformin--mode of action and clinical implications for diabetes and cancer.
Nat Rev Endocrinol. 2014 Mar;10(3):143-56. doi: 10.1038/nrendo.2013.256. Epub 2014 Jan 7.
7
Metformin: an old but still the best treatment for type 2 diabetes.
Diabetol Metab Syndr. 2013 Feb 15;5(1):6. doi: 10.1186/1758-5996-5-6.
8
Automated design of ligands to polypharmacological profiles.
Nature. 2012 Dec 13;492(7428):215-20. doi: 10.1038/nature11691.
9
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
Mol Cell. 2012 Dec 28;48(6):900-13. doi: 10.1016/j.molcel.2012.09.030. Epub 2012 Nov 8.
10
Regulation of hepatic glucose uptake and storage in vivo.
Adv Nutr. 2012 May 1;3(3):286-94. doi: 10.3945/an.112.002089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验