Suppr超能文献

小分子靶向选择性 PCK1 和 PGC-1α赖氨酸乙酰化通过增加乳酸氧化引起抗糖尿病作用。

Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation.

机构信息

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Cell Chem Biol. 2024 Oct 17;31(10):1772-1786.e5. doi: 10.1016/j.chembiol.2024.09.001. Epub 2024 Sep 27.

Abstract

Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.

摘要

已鉴定出可选择性诱导过氧化物酶体增殖物激活受体γ共激活因子(PGC)-1α乙酰化并抑制胰高血糖素依赖性糖异生从而产生抗糖尿病作用的小分子。然而,这些小分子如何在不干扰脂肪生成的情况下选择性地抑制糖异生代谢物转化为葡萄糖尚不清楚。在这里,我们发现小分子 SR18292 通过增加乳酸和葡萄糖氧化来抑制肝葡萄糖生成。SR18292 增加磷酸烯醇丙酮酸羧激酶 1(PCK1)乙酰化,这可逆转其糖异生反应,并有利于从磷酸烯醇丙酮酸合成草酰乙酸(OAA)。由 SR18292 诱导的 PCK1 反向催化反应为三羧酸(TCA)循环提供 OAA,并且对于增加葡萄糖和乳酸氧化以及抑制糖异生是必需的。乙酰化模拟突变体 PCK1 K91Q 有利于补料反应,并模拟了 SR18292 在肝细胞中的代谢作用。PCK1 K91Q 突变体在肝脏中的特异性表达可改善肥胖小鼠的高血糖症。因此,SR18292 通过增强 PCK1 赖氨酸乙酰化的糖异生底物氧化来阻断糖异生,从而支持这些小分子的抗糖尿病作用。

相似文献

1
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation.
Cell Chem Biol. 2024 Oct 17;31(10):1772-1786.e5. doi: 10.1016/j.chembiol.2024.09.001. Epub 2024 Sep 27.
5
SL010110, a lead compound, inhibits gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and improves glucose homeostasis in diabetic mice.
Acta Pharmacol Sin. 2021 Nov;42(11):1834-1846. doi: 10.1038/s41401-020-00609-w. Epub 2021 Feb 11.
7
m 6 A-mediated gluconeogenic enzyme PCK1 upregulation protects against hepatic ischemia-reperfusion injury.
Hepatology. 2025 Jan 1;81(1):94-110. doi: 10.1097/HEP.0000000000000716. Epub 2023 Dec 12.
8
The SMILE transcriptional corepressor inhibits cAMP response element-binding protein (CREB)-mediated transactivation of gluconeogenic genes.
J Biol Chem. 2018 Aug 24;293(34):13125-13133. doi: 10.1074/jbc.RA118.002196. Epub 2018 Jun 27.
9
Estrogen-related receptor alpha is a repressor of phosphoenolpyruvate carboxykinase gene transcription.
J Biol Chem. 2006 Jan 6;281(1):99-106. doi: 10.1074/jbc.M509276200. Epub 2005 Nov 2.
10
Novel small-molecule PGC-1α transcriptional regulator with beneficial effects on diabetic db/db mice.
Diabetes. 2013 Apr;62(4):1297-307. doi: 10.2337/db12-0703. Epub 2012 Dec 18.

引用本文的文献

1
Advance in molecular mechanisms underlying diabetes related to viral hepatitis infection.
Front Cell Infect Microbiol. 2025 Aug 22;15:1661155. doi: 10.3389/fcimb.2025.1661155. eCollection 2025.

本文引用的文献

4
Lactate metabolism in human health and disease.
Signal Transduct Target Ther. 2022 Sep 1;7(1):305. doi: 10.1038/s41392-022-01151-3.
5
Discovery of MK-1462: GLP-1 and Glucagon Receptor Dual Agonist for the Treatment of Obesity and Diabetes.
ACS Med Chem Lett. 2022 Jul 21;13(8):1248-1254. doi: 10.1021/acsmedchemlett.2c00217. eCollection 2022 Aug 11.
6
Striking the Balance: GLP-1/Glucagon Co-Agonism as a Treatment Strategy for Obesity.
Front Endocrinol (Lausanne). 2021 Sep 8;12:735019. doi: 10.3389/fendo.2021.735019. eCollection 2021.
7
Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma.
J Hepatol. 2021 Jun;74(6):1373-1385. doi: 10.1016/j.jhep.2020.12.031. Epub 2021 Jan 21.
8
Structure-Activity Relationship and Biological Investigation of SR18292 (), a Suppressor of Glucagon-Induced Glucose Production.
J Med Chem. 2021 Jan 28;64(2):980-990. doi: 10.1021/acs.jmedchem.0c01450. Epub 2021 Jan 12.
9
NAD metabolism: pathophysiologic mechanisms and therapeutic potential.
Signal Transduct Target Ther. 2020 Oct 7;5(1):227. doi: 10.1038/s41392-020-00311-7.
10
Type II diabetes mellitus: a review on recent drug based therapeutics.
Biomed Pharmacother. 2020 Nov;131:110708. doi: 10.1016/j.biopha.2020.110708. Epub 2020 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验