Suppr超能文献

基于超声图像的放射组学特征对腕管综合征进行准确的自动化诊断:与放射科医生评估的比较。

Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists' assessment.

机构信息

Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; Department of Biomedical Engineering, Singapore University of Social Sciences, Singapore.

出版信息

Eur J Radiol. 2021 Mar;136:109518. doi: 10.1016/j.ejrad.2020.109518. Epub 2021 Jan 2.

Abstract

PURPOSE

Ultrasonography is the most common imaging modality used to diagnose carpal tunnel syndrome (CTS). Recently artificial intelligence algorithms have been used to diagnose musculoskeletal diseases accurately without human errors using medical images. In this work, a computer-aided diagnosis (CAD) system is developed using radiomics features extracted from median nerves (MN) to diagnose CTS accurately.

METHOD

This study is performed on 228 wrists from 65 patients and 57 controls, with an equal number of control and CTS wrists. Nerve conduction study (NCS) is considered as the gold standard in this study. Two radiologists used two guides to evaluate and categorize the pattern and echogenicity of MNs. Radiomics features are extracted from B-mode ultrasound images (Ultrasomics), and the robust features are fed into support vector machine classifier for automated classification. The diagnostic performances of two radiologists and the CAD system are evaluated using ROC analysis.

RESULTS

The agreement of two radiologists was excellent for both guide 1 and 2. The honey-comb pattern clearly appeared in control wrists (based on guide 1). In addition, CTS wrists indicated significantly lower number of fascicles in MNs (based on guide 2). The area under ROC curve (AUC) of the radiologist 1 and 2 are 0.658 and 0.667 based on guide 1 and 0.736 and 0.721 based on guide 2, respectively. The CAD system indicated higher performance than two radiologists with AUC of 0.926.

CONCLUSION

The proposed CAD system shows the benefit of using ultrasomics features and can assist radiologists to diagnose CTS accurately.

摘要

目的

超声检查是诊断腕管综合征(CTS)最常用的影像学方法。最近,人工智能算法已被用于通过医学图像准确诊断肌肉骨骼疾病,而不会出现人为错误。在这项工作中,我们开发了一种基于从中线神经(MN)提取的放射组学特征的计算机辅助诊断(CAD)系统,以准确诊断 CTS。

方法

本研究纳入了 65 名患者和 57 名对照者的 228 只手腕,对照组和 CTS 组的腕部数量相等。神经传导研究(NCS)被认为是本研究的金标准。两名放射科医生使用两种指南评估和分类 MN 的形态和回声强度。从 B 型超声图像(Ultrasomics)中提取放射组学特征,并将稳健特征输入支持向量机分类器进行自动分类。使用 ROC 分析评估两名放射科医生和 CAD 系统的诊断性能。

结果

两名放射科医生对两种指南的一致性均很好。根据指南 1,对照组的腕部出现明显的蜂窝状模式。此外,根据指南 2,CTS 腕部的 MN 束数量明显较少。基于指南 1,放射科医生 1 和 2 的 ROC 曲线下面积(AUC)分别为 0.658 和 0.667,基于指南 2,AUC 分别为 0.736 和 0.721。CAD 系统的性能优于两名放射科医生,AUC 为 0.926。

结论

所提出的 CAD 系统显示了使用超声组学特征的优势,并可以帮助放射科医生准确诊断 CTS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验