Jin Yabin, Pennec Yan, Bonello Bernard, Honarvar Hossein, Dobrzynski Leonard, Djafari-Rouhani Bahram, Hussein Mahmoud I
School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, People's Republic of China.
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université de Lille, 59650 Villeneuve d'Ascq, France.
Rep Prog Phys. 2021 Sep 6;84(8). doi: 10.1088/1361-6633/abdab8.
The introduction of engineered resonance phenomena on surfaces has opened a new frontier in surface science and technology. Pillared phononic crystals, metamaterials, and metasurfaces are an emerging class of artificial structured media, featuring surfaces that consist of pillars-or branching substructures-standing on a plate or a substrate. A pillared phononic crystal exhibits Bragg band gaps, while a pillared metamaterial may feature both Bragg band gaps and local resonance hybridization band gaps. These two band-gap phenomena, along with other unique wave dispersion characteristics, have been exploited for a variety of applications spanning a range of length scales and covering multiple disciplines in applied physics and engineering, particularly in elastodynamics and acoustics. The intrinsic placement of pillars on a semi-infinite surface-yielding a metasurface-has similarly provided new avenues for the control and manipulation of wave propagation. Classical waves are admitted in pillared media, including Lamb waves in plates and Rayleigh and Love waves along the surfaces of substrates, ranging in frequency from hertz to several gigahertz. With the presence of the pillars, these waves couple with surface resonances richly creating new phenomena and properties in the subwavelength regime and in some applications at higher frequencies as well. At the nanoscale, it was shown that atomic-scale resonances-stemming from nanopillars-alter the fundamental nature of conductive thermal transport by reducing the group velocities and generating mode localizations across the entire spectrum of the constituent material well into the terahertz regime. In this article, we first overview the history and development of pillared materials, then provide a detailed synopsis of a selection of key research topics that involve the utilization of pillars or similar branching substructures in different contexts. Finally, we conclude by providing a short summary and some perspectives on the state of the field and its promise for further future development.
表面上工程共振现象的引入为表面科学与技术开辟了新的前沿领域。柱状声子晶体、超材料和超表面是一类新兴的人工结构化介质,其表面由立于平板或基底上的柱状物或分支子结构组成。柱状声子晶体呈现布拉格带隙,而柱状超材料可能兼具布拉格带隙和局域共振杂化带隙。这两种带隙现象以及其他独特的波色散特性已被用于一系列长度尺度的各种应用中,涵盖应用物理和工程的多个学科,特别是在弹性动力学和声学领域。柱状物在半无限表面上的固有排列产生了超表面,同样为波传播的控制和操纵提供了新途径。经典波可在柱状介质中传播,包括平板中的兰姆波以及沿基底表面的瑞利波和乐甫波,频率范围从赫兹到几吉赫兹。由于柱状物的存在,这些波与表面共振充分耦合,在亚波长区域以及某些更高频率的应用中产生了新现象和特性。在纳米尺度上,研究表明源于纳米柱的原子尺度共振通过降低群速度并在构成材料的整个频谱中直至太赫兹范围产生模式局域化,从而改变了传导热传输的基本性质。在本文中,我们首先概述柱状材料的历史和发展,然后详细介绍一系列关键研究主题,这些主题涉及在不同背景下利用柱状物或类似的分支子结构。最后,我们通过对该领域的现状及其未来进一步发展的前景进行简要总结并给出一些观点来得出结论。