Rivas Manuel, Del Valle Luís J, Rodríguez-Rivero Anna M, Turon Pau, Puiggalí Jordi, Alemán Carlos
Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain.
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3234-3245. doi: 10.1021/acsbiomaterials.8b00353. Epub 2018 Aug 23.
In this research we propose a nanoplatform for anticancer therapy that is based on the combination of three components: (1) an antibiotic to target selectively the mitochondria of cancer cells, inhibiting their functions; (2) mineral nanoparticles (NPs) able to encapsulate the antibiotic and to enter into the cells across the cell membrane; and (3) a biocoating to protect the antibiotic during and/or after its regulated release, increasing its therapeutic efficacy. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic, has been used to induce mitochondrial-dysfunctions in cancer cells. Different synthetic strategies have been tested to load such antibiotic into both crystalline hydroxyapatite (cHAp) and amorphous calcium phosphate (ACP) NPs. cHAp NPs showed higher loading capacity, in terms of encapsulation and superficial adsorption of CAM, and slower antibiotic release than ACP NPs. On the other hand, the protecting role played by biocoatings based on pyrophosphate and, especially, triphosphate was greater than that of biophosphonates, the anticancer therapeutic efficacy of CAM being maximized by the former. studies using healthy and cancer cell lines have demonstrated that CAM-loaded cHAp NPs coated with triphosphate selectively kill a great population of cancer cells, evidencing the potential of this nanoplatform in cancer treatment.
在本研究中,我们提出了一种用于抗癌治疗的纳米平台,该平台基于三种成分的组合:(1)一种抗生素,可选择性靶向癌细胞的线粒体,抑制其功能;(2)能够包裹抗生素并穿过细胞膜进入细胞的矿物纳米颗粒(NPs);(3)一种生物涂层,用于在抗生素的调控释放期间和/或之后保护它,提高其治疗效果。氯霉素(CAM)是一种典型的广谱抗生素,已被用于诱导癌细胞中的线粒体功能障碍。已经测试了不同的合成策略,以将这种抗生素负载到结晶羟基磷灰石(cHAp)和无定形磷酸钙(ACP)纳米颗粒中。就CAM的包封和表面吸附而言,cHAp纳米颗粒显示出更高的负载能力,并且抗生素释放比ACP纳米颗粒更慢。另一方面,基于焦磷酸盐,尤其是三磷酸盐的生物涂层所起的保护作用大于双膦酸盐,CAM的抗癌治疗效果通过前者最大化。使用健康细胞系和癌细胞系的研究表明,涂有三磷酸盐的负载CAM的cHAp纳米颗粒能选择性杀死大量癌细胞,证明了这种纳米平台在癌症治疗中的潜力。