Department of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
Department of Computer Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Sensors (Basel). 2021 Jan 10;21(2):448. doi: 10.3390/s21020448.
In the traditional wireless sensor networks (WSNs) localization algorithm based on the Internet of Things (IoT), the distance vector hop (DV-Hop) localization algorithm has the disadvantages of large deviation and low accuracy in three-dimensional (3D) space. Based on the 3DDV-Hop algorithm and combined with the idea of A* algorithm, this paper proposes a wireless sensor network node location algorithm (MA*-3DDV-Hop) that integrates the improved A* algorithm and the 3DDV-Hop algorithm. In MA*-3DDV-Hop, firstly, the hop-count value of nodes is optimized and the error of average distance per hop is corrected. Then, the multi-objective optimization non dominated sorting genetic algorithm (NSGA-II) is adopted to optimize the coordinates locally. After selection, crossover, mutation, the Pareto optimal solution is obtained, which overcomes the problems of premature convergence and poor convergence of existing algorithms. Moreover, it reduces the error of coordinate calculation and raises the localization accuracy of wireless sensor network nodes. For three different multi-peak random scenes, simulation results show that MA*-3DDV-Hop algorithm has better robustness and higher localization accuracy than the 3DDV-Hop, PSO-3DDV-Hop, GA-3DDV-Hop, and N2-3DDV-Hop.
在基于物联网(IoT)的传统无线传感器网络(WSNs)定位算法中,距离向量跳(DV-Hop)定位算法在三维(3D)空间中存在较大偏差和低精度的缺点。基于 3DDV-Hop 算法,并结合 A算法的思想,本文提出了一种无线传感器网络节点定位算法(MA-3DDV-Hop),该算法集成了改进的 A算法和 3DDV-Hop 算法。在 MA-3DDV-Hop 中,首先优化节点的跳数值,并修正平均每跳距离的误差。然后,采用多目标优化非支配排序遗传算法(NSGA-II)对坐标进行局部优化。经过选择、交叉、变异,得到帕累托最优解,克服了现有算法存在的早熟收敛和收敛性差的问题。此外,它减少了坐标计算的误差,提高了无线传感器网络节点的定位精度。对于三种不同的多峰随机场景,仿真结果表明,MA*-3DDV-Hop 算法比 3DDV-Hop、PSO-3DDV-Hop、GA-3DDV-Hop 和 N2-3DDV-Hop 具有更好的鲁棒性和更高的定位精度。