Suppr超能文献

一种用于无线传感器网络的基于自适应策略的距离矢量跳与改进麻雀搜索的混合定位算法

A Hybrid Localization Algorithm for an Adaptive Strategy-Based Distance Vector-Hop and Improved Sparrow Search for Wireless Sensor Networks.

作者信息

Sun Zhiwei, Wu Hua, Liu Yang, Zhou Suyu, Guan Xiangmin

机构信息

School of Information Science & Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China.

School of General Aviation, Civil Aviation Management Institute of China, Beijing 100082, China.

出版信息

Sensors (Basel). 2023 Oct 12;23(20):8426. doi: 10.3390/s23208426.

Abstract

Wireless sensor networks (WSNs) are applied in many fields, among which node localization is one of the most important parts. The Distance Vector-Hop (DV-Hop) algorithm is the most widely used range-free localization algorithm, but its localization accuracy is not high enough. In this paper, to solve this problem, a hybrid localization algorithm for an adaptive strategy-based distance vector-hop and improved sparrow search is proposed (HADSS). First, an adaptive hop count strategy is designed to refine the hop count between all sensor nodes, using a hop count correction factor for secondary correction. Compared with the simple method of using multiple communication radii, this mechanism can refine the hop counts between nodes and reduce the error, as well as the communication overhead. Second, the average hop distance of the anchor nodes is calculated using the mean square error criterion. Then, the average hop distance obtained from the unknown nodes is corrected according to a combination of the anchor node trust degree and the weighting method. Compared with the single weighting method, both the global information about the network and the local information about each anchor node are taken into account, which reduces the average hop distance errors. Simulation experiments are conducted to verify the localization performance of the proposed HADSS algorithm by considering the normalized localization error. The simulation results show that the accuracy of the proposed HADSS algorithm is much higher than that of five existing methods.

摘要

无线传感器网络(WSNs)被应用于许多领域,其中节点定位是最重要的部分之一。距离矢量跳数(DV-Hop)算法是应用最广泛的无需测距的定位算法,但其定位精度不够高。本文针对这一问题,提出了一种基于自适应策略的距离矢量跳数与改进麻雀搜索的混合定位算法(HADSS)。首先,设计了一种自适应跳数策略,利用跳数校正因子进行二次校正,对所有传感器节点之间的跳数进行细化。与使用多个通信半径的简单方法相比,该机制可以细化节点间的跳数,减少误差以及通信开销。其次,采用均方误差准则计算锚节点的平均跳距。然后,根据锚节点信任度和加权方法相结合的方式对未知节点得到的平均跳距进行校正。与单一加权方法相比,该方法既考虑了网络的全局信息,又考虑了每个锚节点的局部信息,减少了平均跳距误差。通过考虑归一化定位误差进行仿真实验,验证了所提HADSS算法的定位性能。仿真结果表明,所提HADSS算法的精度远高于现有的五种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15a2/10610603/e4e4d3f7d4ad/sensors-23-08426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验