Suppr超能文献

利用羟基自由基蛋白足迹数据进行准确的蛋白质结构预测。

Accurate protein structure prediction with hydroxyl radical protein footprinting data.

机构信息

Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, USA.

出版信息

Nat Commun. 2021 Jan 12;12(1):341. doi: 10.1038/s41467-020-20549-7.

Abstract

Hydroxyl radical protein footprinting (HRPF) in combination with mass spectrometry reveals the relative solvent exposure of labeled residues within a protein, thereby providing insight into protein tertiary structure. HRPF labels nineteen residues with varying degrees of reliability and reactivity. Here, we are presenting a dynamics-driven HRPF-guided algorithm for protein structure prediction. In a benchmark test of our algorithm, usage of the dynamics data in a score term resulted in notable improvement of the root-mean-square deviations of the lowest-scoring ab initio models and improved the funnel-like metric P for all benchmark proteins. We identified models with accurate atomic detail for three of the four benchmark proteins. This work suggests that HRPF data along with side chain dynamics sampled by a Rosetta mover ensemble can be used to accurately predict protein structure.

摘要

羟基自由基蛋白足迹法(HRPF)与质谱联用,揭示了蛋白质中标记残基的相对溶剂暴露程度,从而深入了解蛋白质的三级结构。HRPF 以不同的可靠性和反应性标记了十九个残基。在这里,我们提出了一种基于动力学的 HRPF 指导的蛋白质结构预测算法。在对我们的算法的基准测试中,在评分项中使用动力学数据导致最低评分的从头算模型的均方根偏差显著改善,并提高了所有基准蛋白的漏斗状度量 P。我们为四个基准蛋白中的三个鉴定了具有准确原子细节的模型。这项工作表明,HRPF 数据以及 Rosetta 运动器集合采样的侧链动力学可用于准确预测蛋白质结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a0d/7804018/062a8164faa5/41467_2020_20549_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验