Avelino João, Garcia-Marques Leonel, Ventura Rodrigo, Bernardino Alexandre
Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
Faculty of Psychology, University of Lisbon, Lisbon, Portugal.
Int J Soc Robot. 2021;13(8):1851-1877. doi: 10.1007/s12369-020-00720-2. Epub 2021 Jan 8.
Society is starting to come up with exciting applications for social robots like butlers, coaches, and waiters. However, these robots face a challenging task: to meet people during a first encounter. This survey explores the literature that contributes to this task. We define a taxonomy based on psychology and sociology models: Kendon's greeting model and Greenspan's model of social competence. We use Kendon's model as a framework to compare and analyze works that describe robotic systems that engage with people. To categorize individual skills, we use three components of Social Awareness that belong to Greenspan's model: Social Sensitivity, Social Insight, and Communication. Under each section, we highlight some research gaps and propose research directions to address them. Through our analysis, we suggest significant research directions for enhanced first encounters. First, social scripts need to be evaluated under equal conditions. Second, interaction management and tracking for first encounters should consider state and observation uncertainties. Third, perception methods need lighter and robust integration in mobile platforms. Fourth, methods to explicitly define social norms are still scarce. Finally, research on social feedback and interaction recovery may fill the gaps of imperfect first encounters.
社会开始为诸如管家、教练和服务员等社交机器人想出令人兴奋的应用场景。然而,这些机器人面临一项具有挑战性的任务:在初次接触时与人们打交道。本调查探讨了有助于完成这项任务的相关文献。我们基于心理学和社会学模型定义了一种分类法:肯登的问候模型和格林斯潘的社会能力模型。我们以肯登的模型为框架,比较和分析描述与人互动的机器人系统的作品。为了对个体技能进行分类,我们使用了格林斯潘模型中的社会意识的三个组成部分:社会敏感度、社会洞察力和沟通能力。在每个部分下,我们突出了一些研究空白,并提出了解决这些空白的研究方向。通过我们的分析,我们为改善初次接触提出了重要的研究方向。第一,社会脚本需要在平等条件下进行评估。第二,初次接触的交互管理和跟踪应考虑状态和观察的不确定性。第三,感知方法需要在移动平台上进行更轻便且稳健的集成。第四,明确界定社会规范的方法仍然稀缺。最后,关于社会反馈和交互恢复的研究可能会填补不完美初次接触的空白。