Suppr超能文献

递减诱发电位标测指导室性心动过速消融:阐明功能基质

Decrement Evoked Potential Mapping to Guide Ventricular Tachycardia Ablation: Elucidating the Functional Substrate.

作者信息

Bhaskaran Abhishek, Fitzgerald John, Jackson Nicholas, Gizurarson Sigfus, Nanthakumar Kumaraswamy, Porta-Sánchez Andreu

机构信息

University Health Network, University of Toronto, Ontario, Canada.

University of Adelaide, Australia.

出版信息

Arrhythm Electrophysiol Rev. 2020 Dec;9(4):211-218. doi: 10.15420/aer.2020.25.

Abstract

Empirical approaches to targeting the ventricular tachycardia (VT) substrate include mapping of late potentials, local abnormal electrogram, pace-mapping and homogenisation of the abnormal signals. These approaches do not try to differentiate between the passive or active role of local signals as the critical components of the VT circuit. By not considering the functional components, these approaches often view the substrate as a fixed anatomical barrier. Strategies to improve the success of VT ablation need to include the identification of critical functional substrate. Decrement-evoked potential (DeEP) mapping has been developed to elucidate this using an extra-stimulus added to a pacing drive train. With knowledge translation in mind, the authors detail the evolution of the DeEP concept by way of a study of simultaneous panoramic endocardial mapping in VT ablation; an modelling study to demonstrate the factors influencing DeEPs; a multicentre VT ablation validation study; a practical approach to DeEP mapping; the potential utility of DeEPs to identify arrhythmogenic atrial substrate; and, finally, other functional mapping strategies.

摘要

针对室性心动过速(VT)基质的经验性方法包括晚期电位标测、局部异常心电图、起搏标测以及异常信号的同质化。这些方法并未试图区分局部信号作为VT环路关键组成部分的被动或主动作用。由于不考虑功能成分,这些方法通常将基质视为固定的解剖学屏障。提高VT消融成功率的策略需要包括识别关键的功能性基质。递减诱发电位(DeEP)标测已被开发出来,通过在起搏驱动序列中添加额外刺激来阐明这一点。考虑到知识转化,作者通过对VT消融中同步全景心内膜标测的研究、一项用于证明影响DeEP因素的建模研究、一项多中心VT消融验证研究、DeEP标测的实用方法、DeEP识别致心律失常心房基质的潜在效用,以及最后其他功能性标测策略,详细阐述了DeEP概念的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af2/7788395/4d544c38033f/aer-09-211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验