Suppr超能文献

使用多层蒙特卡罗模型在存在全身生理串扰的情况下提高脑血流量定量的准确性。

Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling.

作者信息

Wu Melissa M, Chan Suk-Tak, Mazumder Dibbyan, Tamborini Davide, Stephens Kimberly A, Deng Bin, Farzam Parya, Chu Joyce Yawei, Franceschini Maria Angela, Qu Jason Zhensheng, Carp Stefan A

机构信息

Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States.

Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia, Critical Care and Pain Medicine, Boston, Massachusetts, United States.

出版信息

Neurophotonics. 2021 Jan;8(1):015001. doi: 10.1117/1.NPh.8.1.015001. Epub 2021 Jan 1.

Abstract

Contamination of diffuse correlation spectroscopy (DCS) measurements of cerebral blood flow (CBF) due to systemic physiology remains a significant challenge in the clinical translation of DCS for neuromonitoring. Tunable, multi-layer Monte Carlo-based (MC) light transport models have the potential to remove extracerebral flow cross-talk in cerebral blood flow index ( ) estimates. We explore the effectiveness of MC DCS models in recovering accurate changes in the presence of strong systemic physiology variations during a hypercapnia maneuver. Multi-layer slab and head-like realistic (curved) geometries were used to run MC simulations of photon propagation through the head. The simulation data were post-processed into models with variable extracerebral thicknesses and used to fit DCS multi-distance intensity autocorrelation measurements to estimate timecourses. The results of the MC values from a set of human subject hypercapnia sessions were compared with values estimated using a semi-infinite analytical model, as commonly used in the field. Group averages indicate a gradual systemic increase in blood flow following a different temporal profile versus the expected rapid CBF response. Optimized MC models, guided by several intrinsic criteria and a pressure modulation maneuver, were able to more effectively separate changes from scalp blood flow influence than the analytical fitting, which assumed a homogeneous medium. Three-layer models performed better than two-layer ones; slab and curved models achieved largely similar results, though curved geometries were closer to physiological layer thicknesses. Three-layer, adjustable MC models can be useful in separating distinct changes in scalp and brain blood flow. Pressure modulation, along with reasonable estimates of physiological parameters, can help direct the choice of appropriate layer thicknesses in MC models.

摘要

在将扩散相关光谱技术(DCS)用于神经监测的临床转化过程中,由于全身生理因素导致的脑血流(CBF)的DCS测量污染仍然是一个重大挑战。基于可调谐多层蒙特卡洛(MC)的光传输模型有潜力消除脑血流指数( )估计中的脑外血流串扰。我们探讨了MC DCS模型在高碳酸血症操作期间存在强烈全身生理变化时恢复准确的 变化的有效性。使用多层平板和头部形状逼真(弯曲)的几何结构对光子在头部的传播进行MC模拟。将模拟数据后处理为具有可变脑外厚度的模型,并用于拟合DCS多距离强度自相关测量值以估计 时间进程。将一组人类受试者高碳酸血症实验的MC 值结果与该领域常用的半无限分析模型估计的 值进行比较。组平均值表明,与预期的快速CBF反应相比,血流随不同的时间分布呈逐渐的全身增加。在几个内在标准和压力调制操作的指导下,优化的MC模型比假设为均匀介质的分析拟合能够更有效地将 变化与头皮血流影响区分开来。三层模型比两层模型表现更好;平板和弯曲模型取得了大致相似的结果,尽管弯曲几何结构更接近生理层厚度。三层可调MC模型有助于区分头皮和脑血流的不同变化。压力调制以及对生理参数的合理估计有助于指导MC模型中合适层厚度的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/177f/7779997/d493f0d219fd/NPh-008-015001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验