Suppr超能文献

优化用于成人混合扩散相关光谱和频域扩散光学光谱脑部测量的双层方法。

Optimizing a two-layer method for hybrid diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy cerebral measurements in adults.

作者信息

Forti Rodrigo Menezes, Martins Giovani Grisotti, Baker Wesley Boehs, Mesquita Rickson C

机构信息

Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States.

University of Campinas, Institute of Physics, Campinas, Brazil.

出版信息

Neurophotonics. 2023 Apr;10(2):025008. doi: 10.1117/1.NPh.10.2.025008. Epub 2023 May 23.

Abstract

SIGNIFICANCE

The sensitivity to extracerebral tissues is a well-known confounder of diffuse optics. Two-layer (2L) head models can separate cerebral signals from extracerebral artifacts, but they also carry the risk of crosstalk between fitting parameters.

AIM

We aim to implement a constrained 2L head model for hybrid diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS) data and to characterize errors in cerebral blood flow and tissue absorption with the proposed model.

APPROACH

The algorithm uses the analytical solution of a 2L cylinder and an extracerebral layer thickness to fit multidistance FD-DOS (0.8 to 4 cm) and DCS (0.8 and 2.5 cm) data, assuming homogeneous tissue reduced scattering. We characterized the algorithm's accuracy for simulated data with noise generated using a 2L slab and realistic adult head geometries and for phantom data.

RESULTS

Our algorithm recovered the cerebral flow index with 6.3 [2.8, 13.2]% and 34 [30, 42]% (median absolute percent error [interquartile range]) for slab and head geometries, respectively. Corresponding errors in the cerebral absorption coefficient were 5.0 [3.0, 7.9]% and 4.6 [2.4, 7.2]% for the slab and head geometries and 8 [5, 12]% for our phantom experiment. Our results were minimally sensitive to second-layer scattering changes and were robust to cross-talk between fitting parameters.

CONCLUSIONS

In adults, the constrained 2L algorithm promises to improve FD-DOS/DCS accuracy compared with the conventional semi-infinite approach.

摘要

意义

对脑外组织的敏感性是漫射光学中一个众所周知的混杂因素。双层(2L)头部模型可以将脑信号与脑外伪影分离,但它们也存在拟合参数之间串扰的风险。

目的

我们旨在为混合漫射相关光谱(DCS)和频域漫射光学光谱(FD-DOS)数据实现一种受限的2L头部模型,并用所提出的模型表征脑血流量和组织吸收中的误差。

方法

该算法使用2L圆柱体的解析解和脑外层厚度来拟合多距离FD-DOS(0.8至4厘米)和DCS(0.8和2.5厘米)数据,假设组织的约化散射是均匀的。我们用2L平板和逼真的成人头部几何形状生成的噪声对模拟数据以及体模数据来表征该算法的准确性。

结果

对于平板和头部几何形状,我们的算法分别以6.3 [2.8, 13.2]%和34 [30, 42]%(中位数绝对百分比误差[四分位间距])恢复脑血流指数。平板和头部几何形状下脑吸收系数的相应误差分别为5.0 [3.0, 7.9]%和4.6 [2.4, 7.2]%,我们的体模实验中的误差为8 [5, 12]%。我们的结果对第二层散射变化的敏感性最小,并且对拟合参数之间的串扰具有鲁棒性。

结论

在成年人中,与传统的半无限方法相比,受限的2L算法有望提高FD-DOS/DCS的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85dc/10204866/92f2643d47ba/NPh-010-025008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验