School of Engineering, RMIT University, Melbourne, VIC, Australia.
Biomed Phys Eng Express. 2019 Nov 25;6(1):015008. doi: 10.1088/2057-1976/ab54ad.
Brain-computer interface (BCI) systems typically deploy common spatial pattern (CSP) for feature extraction of mu and beta rhythms based on upper-limbs kinaesthetic motor imageries (KMI). However, it was not used to classify the left versus right foot KMI, due to its location inside the mesial wall of sensorimotor cortex, which makes it difficult to be detected. We report novel classification of mu and beta EEG features, during left and right foot KMI cognitive task, using CSP, and filter bank common spatial pattern (FBCSP) method, to optimize the subject-specific band selection. We initially proposed CSP method, followed by the implementation of FBCSP for optimization of individual spatial patterns, wherein a set of CSP filters was learned, for each of the time/frequency filters in a supervised way. This was followed by the log-variance feature extraction and concatenation of all features (over all chosen spectral-filters). Subsequently, supervised machine learning was implemented, i.e. logistic regression (Logreg) and linear discriminant analysis (LDA), in order to compare the respective foot KMI classification rates. Training and testing data, used in the model, was validated using 10-fold cross validation. Four methodology paradigms are reported, i.e. CSP LDA, CSP Logreg, and FBCSP LDA, FBCSP Logreg. All paradigms resulted in an average classification accuracy rate above the statistical chance level of 60.0% (P < 0.01). On average, FBCSP LDA outperformed remaining paradigms with kappa score of 0.41 and classification accuracy of 70.28% ± 4.23. Similarly, this paradigm enabled discrimination between right and left foot KMI cognitive task at highest accuracy rate i.e. maximum 77.5% with kappa = 0.55 and the area under ROC curve as 0.70 (in single-trial analysis). The proposed novel paradigms, using CSP and FBCSP, established a potential to exploit the left versus right foot imagery classification, in synchronous 2-class BCI for controlling robotic foot, or foot neuroprosthesis.
脑-机接口 (BCI) 系统通常基于上肢运动想象 (KMI) 来使用共空间模式 (CSP) 提取 mu 和 beta 节律的特征。然而,由于其位于感觉运动皮层的内侧壁内,因此很难被检测到,因此它并未用于对左右脚 KMI 进行分类。我们报告了使用 CSP 和滤波器组共空间模式 (FBCSP) 方法对左、右脚 KMI 认知任务中的 mu 和 beta EEG 特征进行分类的新方法,以优化特定于个体的频段选择。我们最初提出了 CSP 方法,然后实现了 FBCSP 以优化个体空间模式,其中以监督的方式为每个时间/频率滤波器学习了一组 CSP 滤波器。然后,提取对数方差特征,并将所有特征(在所有选定的光谱滤波器上)串联起来。随后,实施了监督机器学习,即逻辑回归 (Logreg) 和线性判别分析 (LDA),以比较各自的脚 KMI 分类率。模型中使用的训练和测试数据通过 10 折交叉验证进行验证。报告了四种方法学范式,即 CSP LDA、CSP Logreg 和 FBCSP LDA、FBCSP Logreg。所有范式的平均分类准确率均高于 60.0%(P < 0.01)的统计机会水平。平均而言,FBCSP LDA 的表现优于其他范式,kappa 评分为 0.41,分类准确率为 70.28%±4.23%。同样,该范式能够以最高的准确率(kappa=0.55,ROC 曲线下面积为 0.70)区分左右脚 KMI 认知任务,即最高可达 77.5%。使用 CSP 和 FBCSP 的新范式为利用左右脚图像分类提供了潜力,可用于同步 2 类 BCI 以控制机器人脚或脚部神经假体。