Rayback Shelly A, Belmecheri Soumaya, Gagen Mary H, Lini Andrea, Gregory Rachel, Jenkins Catherine
Department of Geography, University of Vermont, 207 Old Mill Building, 94 University Place, Burlington, VT, 05405, USA.
Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA.
New Phytol. 2020 Dec;228(6):1781-1795. doi: 10.1111/nph.16811. Epub 2020 Aug 18.
Rising atmospheric CO (c) is expected to promote tree growth and lower water loss via changes in leaf gas exchange. However, uncertainties remain if gas-exchange regulation strategies are homeostatic or dynamical in response to increasing c, as well as evolving climate and pollution inputs. Using a suite of tree ring-based δC-derived physiological parameters (ΔC, c, iWUE) and tree growth from a mesic, low elevation stand of canopy-dominant Tsuga canadensis in north-eastern USA, we investigated the influence of rising c, climate and pollution on, and characterised the dynamical regulation strategy of, leaf gas exchange at multidecadal scales. Isotopic and growth time series revealed an evolving physiological response in which the species shifted its leaf gas-exchange strategy dynamically (constant c; constant c/c; constant c - c) in response to rising c, moisture availability and site conditions over 111 yr. Tree iWUE plateaued after 1975, driven by greater moisture availability and a changing soil biogeochemistry that may have impaired a stomatal response. Results suggested that trees may exhibit more complex physiological responses to the changing environmental conditions over multidecadal periods, and complicating the parameterisation of Earth system models and the estimation of future carbon sink capacity and water balance in midlatitude forests and elsewhere.
预计大气中二氧化碳(CO₂)浓度上升将通过叶片气体交换的变化促进树木生长并降低水分流失。然而,对于气体交换调节策略在应对不断增加的CO₂浓度、不断变化的气候和污染输入时是稳态的还是动态的,仍存在不确定性。我们利用一套基于树木年轮的δC衍生生理参数(ΔC、CO₂浓度、内在水分利用效率)以及美国东北部一个中等湿度、低海拔的优势冠层加拿大铁杉林分的树木生长数据,研究了CO₂浓度上升、气候和污染对叶片气体交换的影响,并在数十年尺度上表征了叶片气体交换的动态调节策略。同位素和生长时间序列揭示了一种不断演变的生理响应,即该物种在111年的时间里,根据CO₂浓度上升、水分可利用性和立地条件的变化,动态地改变其叶片气体交换策略(恒定CO₂浓度;恒定CO₂浓度/CO₂浓度;恒定CO₂浓度 - CO₂浓度)。1975年后,树木的内在水分利用效率趋于平稳,这是由于水分可利用性增加以及土壤生物地球化学变化可能削弱了气孔响应。结果表明,树木在数十年时间里可能对不断变化的环境条件表现出更复杂的生理响应,这使得地球系统模型的参数化以及对中纬度森林和其他地区未来碳汇能力和水平衡的估计变得更加复杂。