Suppr超能文献

自发性输尿管结石排出:一种新颖而全面的列线图。

Spontaneous ureteral stone passage: a novel and comprehensive nomogram.

机构信息

Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon.

Nature Conservation Center, American University of Beirut, Beirut, Lebanon.

出版信息

Minerva Urol Nephrol. 2022 Feb;74(1):102-109. doi: 10.23736/S2724-6051.20.04125-9. Epub 2021 Jan 13.

Abstract

BACKGROUND

Ureteral stones pose a high economic and medical burden among Emergency Department (ED) admissions. Management strategies vary from expectant therapy to surgical interventions. Since predictors of ureteral spontaneous stone passage (SSP) are still not well understood, we sought to create a novel nomogram to guide management decisions.

METHODS

Charts were retrospectively reviewed for patients who presented to our institution's ED with non-febrile renal colic and received a radiological diagnosis of ureteral stone ≤10 mm. Demographic, clinical, laboratory, and non-contrast CT data were collected. This novel nomogram incorporates the serum neutrophil-to-lymphocyte ratio (NLR) as a potential predictor of SSP. The model was derived from a multivariate logistic regression and was validated on a different cohort. A receiver operator characteristic (ROC) curve was constructed and the area under the curve (AUC) was computed.

RESULTS

A total of 1186 patients presented to our ED between January 2010 and October 2018. We randomly divided our population into a derivation and validation cohort in one to five ratio. A stone size ≥7 mm was the strongest predictor of SSP failure; OR=9.47; 95% CI: 6.03-14.88. Similarly, a NLR≥3.14 had 2.17; (1.58-2.98) the odds of retained stone. SSP failure was also correlated with proximal position, severe hydronephrosis, and leukocyte esterase ≥75, P=0.02, P=0.05, and P=0.006, respectively. The model had an AUC of 0.804 (0.776-0.832). The nomogram was also used to compute the risk of SSP failure (AUC 0.769 [0.709-0.829]).

CONCLUSIONS

Our novel nomogram can be used as a predictor for SSP and can be used clinically in decision making.

摘要

背景

输尿管结石在急诊科(ED)入院患者中造成了很高的经济和医疗负担。治疗策略从期待疗法到手术干预不等。由于输尿管自发性结石排出(SSP)的预测因素仍不清楚,我们试图创建一个新的列线图来指导管理决策。

方法

回顾性分析了我院急诊科就诊的非发热性肾绞痛且放射学诊断为≤10mm 输尿管结石的患者的病历。收集了人口统计学、临床、实验室和非对比 CT 数据。该新列线图纳入了血清中性粒细胞与淋巴细胞比值(NLR)作为 SSP 的潜在预测因子。该模型是从多变量逻辑回归中得出的,并在另一个队列中进行了验证。构建了受试者工作特征(ROC)曲线并计算了曲线下面积(AUC)。

结果

2010 年 1 月至 2018 年 10 月期间,共有 1186 例患者就诊于我院急诊科。我们将人群随机分为推导队列和验证队列,比例为 1:5。结石大小≥7mm 是 SSP 失败的最强预测因子;OR=9.47;95%CI:6.03-14.88。同样,NLR≥3.14 的比值为 2.17;(1.58-2.98)结石残留的几率。SSP 失败也与结石近端位置、重度肾积水和白细胞酯酶≥75 相关,P=0.02,P=0.05,P=0.006。模型的 AUC 为 0.804(0.776-0.832)。该列线图还用于计算 SSP 失败的风险(AUC 0.769 [0.709-0.829])。

结论

我们的新列线图可用于预测 SSP,并可在临床决策中使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验