Hao Yaming, Li Yefei, Wu Jianxiang, Meng Lingshen, Wang Jinling, Jia Chenglin, Liu Tao, Yang Xuejing, Liu Zhi-Pan, Gong Ming
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
Key Laboratory of Computational Physical Science, Fudan University, Shanghai 200438, P. R. China.
J Am Chem Soc. 2021 Jan 27;143(3):1493-1502. doi: 10.1021/jacs.0c11307. Epub 2021 Jan 13.
NiFe oxyhydroxide is one of the most promising oxygen evolution reaction (OER) catalysts for renewable hydrogen production, and deciphering the identity and reactivity of the oxygen intermediates on its surface is a key challenge but is critical to the catalyst design for improving the energy efficiency. Here, we screened and utilized in situ reactive probes that can selectively target specific oxygen intermediates with high rates to investigate the OER intermediates and pathway on NiFe oxyhydroxide. Most importantly, the oxygen atom transfer (OAT) probes (e.g., 4-(diphenylphosphino) benzoic acid) could efficiently inhibit the OER kinetics by scavenging the OER intermediates, exhibiting lower OER currents, larger Tafel slopes, and larger kinetic isotope effect (KIE) values, while probes with other reactivities demonstrated much smaller effects. Combining the OAT reactivity with electrochemical kinetic and operando Raman spectroscopic techniques, we identified a resting Fe═O intermediate in the Ni-O scaffold and a rate-limiting O-O chemical coupling step between a Fe═O moiety and a vicinal bridging O. DFT calculation further revealed a longer Fe═O bond formed on the surface and a large kinetic energy barrier of the O-O chemical coupling step, corroborating the experimental results. These results point to a new direction of liberating lattice O and expediting O-O coupling for optimizing NiFe-based OER electrocatalyst.
羟基氧化镍是用于可再生制氢的最有前景的析氧反应(OER)催化剂之一,解析其表面氧中间体的身份和反应活性是一项关键挑战,但对于提高能源效率的催化剂设计至关重要。在此,我们筛选并利用了能够以高速率选择性靶向特定氧中间体的原位反应探针,来研究羟基氧化镍上的OER中间体和反应途径。最重要的是,氧原子转移(OAT)探针(例如4-(二苯基膦基)苯甲酸)能够通过清除OER中间体有效抑制OER动力学,表现出更低的OER电流、更大的塔菲尔斜率和更大的动力学同位素效应(KIE)值,而具有其他反应活性的探针显示出的影响要小得多。将OAT反应活性与电化学动力学和原位拉曼光谱技术相结合,我们在Ni-O支架中确定了一个静止的Fe═O中间体以及Fe═O部分与相邻桥连O之间的限速O-O化学偶联步骤。密度泛函理论(DFT)计算进一步揭示了在表面形成的更长的Fe═O键以及O-O化学偶联步骤的大动能势垒,证实了实验结果。这些结果为释放晶格氧和加速O-O偶联以优化基于NiFe的OER电催化剂指明了新方向。