Zhou Hongyu, Duan Xiaoguang, Huang Bingkun, Zhong Shuang, Cheng Cheng, Sharma Virender K, Wang Shaobin, Lai Bo
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
Angew Chem Int Ed Engl. 2025 May;64(19):e202422892. doi: 10.1002/anie.202422892. Epub 2025 Mar 18.
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
对反应机理进行全面深入的分析对于推进化学水处理技术至关重要。然而,由于传统实验和分析方法的局限性,在许多水体系中,活性物种的类型及其生成途径通常存在争议。作为高度灵敏的诊断工具,同位素技术在反应条件干扰最小的情况下能提供更深入的见解。尽管如此,对同位素结果进行精确解读仍然是一项重大挑战。在此,我们首先审视了同位素化学的基本原理,并强调了同位素取代引起的关键变化。接下来,我们讨论了同位素技术在动力学同位素效应中的应用,提出了在复杂体系中解释动力学同位素效应的路线图。此外,我们总结了同位素技术在元素追踪中的应用,以确定反应位点并识别主要的活性物种。最后,我们提出了未来的研究方向,强调了在环境化学及相关领域中合理设计和解释同位素实验的关键考虑因素。