Suppr超能文献

通过隐马尔可夫模型推理利用相机原始数据进行视频超分辨率

Exploit Camera Raw Data for Video Super- Resolution via Hidden Markov Model Inference.

作者信息

Liu Xiaohong, Shi Kangdi, Wang Zhe, Chen Jun

出版信息

IEEE Trans Image Process. 2021;30:2127-2140. doi: 10.1109/TIP.2021.3049974. Epub 2021 Jan 25.

Abstract

To the best of our knowledge, the existing deep-learning-based Video Super-Resolution (VSR) methods exclusively make use of videos produced by the Image Signal Processor (ISP) of the camera system as inputs. Such methods are 1) inherently suboptimal due to information loss incurred by non-invertible operations in ISP, and 2) inconsistent with the real imaging pipeline where VSR in fact serves as a pre-processing unit of ISP. To address this issue, we propose a new VSR method that can directly exploit camera sensor data, accompanied by a carefully built Raw Video Dataset (RawVD) for training, validation, and testing. This method consists of a Successive Deep Inference (SDI) module and a reconstruction module, among others. The SDI module is designed according to the architectural principle suggested by a canonical decomposition result for Hidden Markov Model (HMM) inference; it estimates the target high-resolution frame by repeatedly performing pairwise feature fusion using deformable convolutions. The reconstruction module, built with elaborately designed Attention-based Residual Dense Blocks (ARDBs), serves the purpose of 1) refining the fused feature and 2) learning the color information needed to generate a spatial-specific transformation for accurate color correction. Extensive experiments demonstrate that owing to the informativeness of the camera raw data, the effectiveness of the network architecture, and the separation of super-resolution and color correction processes, the proposed method achieves superior VSR results compared to the state-of-the-art and can be adapted to any specific camera-ISP. Code and dataset are available at https://github.com/proteus1991/RawVSR.

摘要

据我们所知,现有的基于深度学习的视频超分辨率(VSR)方法仅使用相机系统的图像信号处理器(ISP)生成的视频作为输入。此类方法存在以下问题:1)由于ISP中不可逆操作导致的信息丢失,其本质上是次优的;2)与实际成像流程不一致,在实际成像流程中,VSR实际上是ISP的预处理单元。为了解决这个问题,我们提出了一种新的VSR方法,该方法可以直接利用相机传感器数据,并附带一个精心构建的原始视频数据集(RawVD)用于训练、验证和测试。该方法包括一个连续深度推理(SDI)模块和一个重建模块等。SDI模块是根据隐马尔可夫模型(HMM)推理的典型分解结果所建议的架构原则设计的;它通过使用可变形卷积反复执行成对特征融合来估计目标高分辨率帧。重建模块由精心设计的基于注意力的残差密集块(ARDB)构建而成,其作用是:1)细化融合特征;2)学习生成用于精确色彩校正的空间特定变换所需的颜色信息。大量实验表明,由于相机原始数据的信息丰富性、网络架构的有效性以及超分辨率和色彩校正过程的分离,所提出的方法与现有技术相比取得了更优的VSR结果,并且可以适应任何特定的相机-ISP。代码和数据集可在https://github.com/proteus1991/RawVSR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验