Suppr超能文献

将单图像超分辨率模型适配到视频超分辨率:一种即插即用的方法。

Adapting Single-Image Super-Resolution Models to Video Super-Resolution: A Plug-and-Play Approach.

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2023 May 24;23(11):5030. doi: 10.3390/s23115030.

Abstract

The quality of videos varies due to the different capabilities of sensors. Video super-resolution (VSR) is a technology that improves the quality of captured video. However, the development of a VSR model is very costly. In this paper, we present a novel approach for adapting single-image super-resolution (SISR) models to the VSR task. To achieve this, we first summarize a common architecture of SISR models and perform a formal analysis of adaptation. Then, we propose an adaptation method that incorporates a plug-and-play temporal feature extraction module into existing SISR models. The proposed temporal feature extraction module consists of three submodules: offset estimation, spatial aggregation, and temporal aggregation. In the spatial aggregation submodule, the features obtained from the SISR model are aligned to the center frame based on the offset estimation results. The aligned features are fused in the temporal aggregation submodule. Finally, the fused temporal feature is fed to the SISR model for reconstruction. To evaluate the effectiveness of our method, we adapt five representative SISR models and evaluate these models on two popular benchmarks. The experiment results show the proposed method is effective on different SISR models. In particular, on the Vid4 benchmark, the VSR-adapted models achieve at least 1.26 dB and 0.067 improvement over the original SISR models in terms of PSNR and SSIM metrics, respectively. Additionally, these VSR-adapted models achieve better performance than the state-of-the-art VSR models.

摘要

由于传感器性能的不同,视频质量也有所差异。视频超分辨率(VSR)是一种提高捕获视频质量的技术。然而,开发 VSR 模型的成本非常高。在本文中,我们提出了一种将单图像超分辨率(SISR)模型自适应到 VSR 任务的新方法。为了实现这一目标,我们首先总结了 SISR 模型的常见架构,并对自适应进行了形式分析。然后,我们提出了一种自适应方法,将即插即用的时间特征提取模块集成到现有的 SISR 模型中。所提出的时间特征提取模块由三个子模块组成:偏移估计、空间聚合和时间聚合。在空间聚合子模块中,根据偏移估计结果,将从 SISR 模型获得的特征对齐到中心帧。在时间聚合子模块中,对对齐的特征进行融合。最后,将融合的时间特征输入到 SISR 模型进行重建。为了评估我们方法的有效性,我们自适应了五个具有代表性的 SISR 模型,并在两个流行的基准上对这些模型进行了评估。实验结果表明,我们的方法在不同的 SISR 模型上都是有效的。特别是在 Vid4 基准上,VSR 自适应模型在 PSNR 和 SSIM 指标上分别比原始 SISR 模型至少提高了 1.26dB 和 0.067。此外,这些 VSR 自适应模型的性能优于最先进的 VSR 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd1/10255317/825f5a3afc09/sensors-23-05030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验