Suppr超能文献

CycMuNet+:用于时空视频超分辨率的循环投影相互学习

CycMuNet+: Cycle-Projected Mutual Learning for Spatial-Temporal Video Super-Resolution.

作者信息

Hu Mengshun, Jiang Kui, Wang Zheng, Bai Xiang, Hu Ruimin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13376-13392. doi: 10.1109/TPAMI.2023.3293522. Epub 2023 Oct 3.

Abstract

Spatial-Temporal Video Super-Resolution (ST-VSR) aims to generate high-quality videos with higher resolution (HR) and higher frame rate (HFR). Quite intuitively, pioneering two-stage based methods complete ST-VSR by directly combining two sub-tasks: Spatial Video Super-Resolution (S-VSR) and Temporal Video Super-Resolution (T-VSR) but ignore the reciprocal relations among them. 1) T-VSR to S-VSR: temporal correlations help accurate spatial detail representation; 2) S-VSR to T-VSR: abundant spatial information contributes to the refinement of temporal prediction. To this end, we propose a one-stage based Cycle-projected Mutual learning network (CycMuNet) for ST-VSR, which makes full use of spatial-temporal correlations via the mutual learning between S-VSR and T-VSR. Specifically, we propose to exploit the mutual information among them via iterative up- and down projections, where spatial and temporal features are fully fused and distilled, helping high-quality video reconstruction. In addition, we also show interesting extensions for efficient network design (CycMuNet+), such as parameter sharing and dense connection on projection units and feedback mechanism in CycMuNet. Besides extensive experiments on benchmark datasets, we also compare our proposed CycMuNet (+) with S-VSR and T-VSR tasks, demonstrating that our method significantly outperforms the state-of-the-art methods.

摘要

时空视频超分辨率(ST-VSR)旨在生成具有更高分辨率(HR)和更高帧率(HFR)的高质量视频。直观地说,基于两阶段的开创性方法通过直接组合两个子任务来完成ST-VSR:空间视频超分辨率(S-VSR)和时间视频超分辨率(T-VSR),但忽略了它们之间的相互关系。1)从T-VSR到S-VSR:时间相关性有助于准确的空间细节表示;2)从S-VSR到T-VSR:丰富的空间信息有助于改进时间预测。为此,我们提出了一种用于ST-VSR的基于单阶段的循环投影互学习网络(CycMuNet),该网络通过S-VSR和T-VSR之间的互学习充分利用时空相关性。具体来说,我们建议通过迭代的上投影和下投影来利用它们之间的互信息,其中空间和时间特征被充分融合和提炼,有助于高质量视频重建。此外,我们还展示了用于高效网络设计(CycMuNet+)的有趣扩展,例如投影单元上的参数共享和密集连接以及CycMuNet中的反馈机制。除了在基准数据集上进行广泛实验外,我们还将我们提出的CycMuNet(+)与S-VSR和T-VSR任务进行了比较,表明我们的方法明显优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验