Suppr超能文献

高通量微流控系统,具有多个氧气水平,用于研究肿瘤球体中的缺氧。

High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids.

机构信息

Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.

出版信息

Biofabrication. 2021 Apr 26;13(3). doi: 10.1088/1758-5090/abdb88.

Abstract

Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inmodels. Environmental oxygen levels, applied in mostmodels, poorly imitate the oxygen conditions cells experience, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriateplatforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reportedfindings, demonstrating the predictive potential of our system.

摘要

复制生理氧气水平对于在模型中模拟人体生理学和病理学至关重要。大多数模型中应用的环境氧气水平,无法真实模拟细胞所经历的氧气条件,而细胞所处的氧气水平平均约为 5%。大多数实体瘤表现出缺氧水平的区域,从而促进肿瘤的进展和对治疗的抵抗。尽管这种现象为癌症治疗提供了一个特定的靶点,但仍然缺乏合适的平台。微流控模型提供了对物理化学参数的先进时空控制。然而,迄今为止描述的大多数系统每个芯片只能控制单一的氧气水平,因此提供的实验通量有限。在这里,我们开发了一种多层微流控设备,将 3D 肿瘤球体的高通量生成与五个氧气水平的线性梯度相结合,从而能够在单个芯片上实现多种条件和数百个复制品。我们展示了所施加的氧气梯度如何影响活性氧 (ROS) 的产生以及阿霉素和替拉扎明在乳腺癌球体中的细胞毒性。我们的结果与先前报道的缺氧条件下 ROS 产生增加的结果一致,并提供了关于药物细胞毒性水平的新见解,这些水平更接近先前报道的发现,证明了我们系统的预测潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验