Suppr超能文献

在微流控系统中进行长期监测,以研究肿瘤球体对慢性和周期性缺氧的反应。

Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia.

机构信息

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada.

出版信息

Sci Rep. 2019 Nov 28;9(1):17782. doi: 10.1038/s41598-019-54001-8.

Abstract

We demonstrate the application of a microfluidic platform combining spatiotemporal oxygen control and long-term microscopy monitoring to observe tumour spheroid response to hypoxia. The platform is capable of recreating physiologically-relevant low and cycling oxygen levels not attainable in traditional cell culture environments, while image-based monitoring visualizes cell response to these physiologically-relevant conditions. Monitoring spheroid cultures during hypoxic exposure allows us to observe, for the first time, that spheroids swell and shrink in response to time-varying oxygen profiles switching between 0% and 10% O; this swelling-shrinkage behaviour appears to be driven by swelling of individual cells within the spheroids. We also apply the system to monitoring tumour models during anticancer treatment under varying oxygen conditions. We observe higher uptake of the anticancer agent doxorubicin under a cycling hypoxia profile than under either chronic hypoxia or in vitro normoxia, and the two-photon microscopy monitoring facilitated by our system also allows us to observe heterogeneity in doxorubicin uptake within spheroids at the single-cell level. Combining optical sectioning microscopy with precise spatiotemporal oxygen control and 3D culture opens the door for a wide range of future studies on microenvironmental mechanisms driving cancer progression and resistance to anticancer therapy. These types of studies could facilitate future improvements in cancer diagnostics and treatment.

摘要

我们展示了一种微流控平台的应用,该平台结合时空氧控制和长期显微镜监测,用于观察肿瘤球体对缺氧的反应。该平台能够重现传统细胞培养环境中无法达到的生理相关的低氧和循环氧水平,而基于图像的监测则可以可视化细胞对这些生理相关条件的反应。在缺氧暴露期间监测球体培养物,使我们能够首次观察到球体在 0% 和 10% O 之间的氧变化时膨胀和收缩;这种膨胀-收缩行为似乎是由球体内部单个细胞的膨胀引起的。我们还将该系统应用于在不同氧条件下监测抗癌治疗中的肿瘤模型。我们观察到在循环缺氧条件下,抗癌药物阿霉素的摄取量高于慢性缺氧或体外常氧条件下,我们系统的双光子显微镜监测还允许我们在单细胞水平上观察到球体中阿霉素摄取的异质性。将光学切片显微镜与精确的时空氧控制和 3D 培养相结合,为研究微环境机制驱动癌症进展和抗癌治疗耐药性的广泛未来研究打开了大门。这些类型的研究可以促进癌症诊断和治疗的未来改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b3/6883080/3a2ab54143c2/41598_2019_54001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验