Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; email:
Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA.
Annu Rev Phys Chem. 2021 Apr 20;72:279-306. doi: 10.1146/annurev-physchem-090519-050510. Epub 2021 Jan 13.
In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.
在这篇综述中,我们讨论了振动和频产生(VSFG)显微镜的最新发展和应用。这项高光谱成像技术可以在空间、时间和光谱域中解析没有反转对称的系统,如表面、界面和非中心对称自组装材料。我们讨论了两种常见的 VSFG 显微镜几何结构:宽场和共焦点扫描。然后,我们介绍了 VSFG 的原理以及高光谱成像与传统光谱学、显微镜学和时间分辨测量之间的关系。我们进一步强调了 VSFG 显微镜在自组装单层、植物中的纤维素、胶原纤维和晶格自组装仿生材料中的关键应用。在这些系统中,VSFG 显微镜揭示了物理性质之间的关系,如果没有光谱、空间和时间分辨率,这些关系将被隐藏。最后,我们讨论了超快瞬态 VSFG 显微镜的最新发展,它可以空间测量自组装材料的超快振动动力学。综述以对 VSFG 显微镜的技术挑战和科学潜力的展望结束。