Suppr超能文献

水/仿生自组装格子材料界面处的空间依赖氢键动力学。

Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093.

Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23385-23392. doi: 10.1073/pnas.2001861117. Epub 2020 Sep 9.

Abstract

Understanding hydrogen-bond interactions in self-assembled lattice materials is crucial for preparing such materials, but the role of hydrogen bonds (H bonds) remains unclear. To gain insight into H-bond interactions at the materials' intrinsic spatial scale, we investigated ultrafast H-bond dynamics between water and biomimetic self-assembled lattice materials (composed of sodium dodecyl sulfate and β-cyclodextrin) in a spatially resolved manner. To accomplish this, we developed an infrared pump, vibrational sum-frequency generation (VSFG) probe hyperspectral microscope. With this hyperspectral imaging method, we were able to observe that the primary and secondary OH groups of β-cyclodextrin exhibit markedly different dynamics, suggesting distinct H-bond environments, despite being separated by only a few angstroms. We also observed another ultrafast dynamic reflecting a weakening and restoring of H bonds between bound water and the secondary OH of β-cyclodextrin, which exhibited spatial uniformity within self-assembled domains, but heterogeneity between domains. The restoration dynamics further suggest heterogeneous hydration among the self-assembly domains. The ultrafast nature and meso- and microscopic ordering of H-bond dynamics could contribute to the flexibility and crystallinity of the material--two critically important factors for crystalline lattice self-assemblies--shedding light on engineering intermolecular interactions for self-assembled lattice materials.

摘要

理解自组装晶格材料中的氢键相互作用对于制备这种材料至关重要,但氢键(H 键)的作用仍不清楚。为了深入了解材料内在空间尺度上的氢键相互作用,我们以空间分辨的方式研究了水和仿生自组装晶格材料(由十二烷基硫酸钠和β-环糊精组成)之间超快氢键动力学。为了实现这一目标,我们开发了一种红外泵浦、振动和频产生(VSFG)探针高光谱显微镜。通过这种高光谱成像方法,我们观察到β-环糊精的主要和次要 OH 基团表现出明显不同的动力学,尽管它们仅相隔几个埃,但暗示了不同的氢键环境。我们还观察到另一种超快动力学,反映了结合水和β-环糊精的二级 OH 之间氢键的减弱和恢复,这种动力学在自组装域内表现出空间均匀性,但在域之间表现出异质性。恢复动力学进一步表明自组装域之间存在异质水合作用。氢键动力学的超快性质以及介观和微观有序性可能有助于材料的柔韧性和结晶度——这是结晶晶格自组装的两个极其重要的因素——为自组装晶格材料的分子间相互作用工程提供了启示。

相似文献

引用本文的文献

4
Hydration behaviors of nonfouling zwitterionic materials.抗污染两性离子材料的水化行为。
Chem Sci. 2023 Jun 6;14(27):7500-7511. doi: 10.1039/d3sc01977b. eCollection 2023 Jul 12.

本文引用的文献

5
Enhancing Analytical Separations Using Super-Resolution Microscopy.利用超分辨率显微镜增强分析分离
Annu Rev Phys Chem. 2018 Apr 20;69:353-375. doi: 10.1146/annurev-physchem-052516-045018. Epub 2018 Feb 28.
8
DNA's Chiral Spine of Hydration.DNA的手性水化主链。
ACS Cent Sci. 2017 Jul 26;3(7):708-714. doi: 10.1021/acscentsci.7b00100. Epub 2017 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验