Suppr超能文献

E2F1 通过影响 WNT4 信号调节睾丸下降并控制精子发生。

E2F1 regulates testicular descent and controls spermatogenesis by influencing WNT4 signaling.

机构信息

Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA

Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA.

出版信息

Development. 2021 Jan 13;148(1):dev191189. doi: 10.1242/dev.191189.

Abstract

Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although deletion or overexpression in mice causes spermatogenic failure, the mechanism by which influences testicular function is unknown. This investigation revealed that null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both and in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on repression of , supporting a role for in germ cell survival. In the future, modulation of expression in men with cryptorchidism and spermatogenic failure due to copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.

摘要

隐睾症是男性中最常见的泌尿生殖系统先天缺陷,也是男性不育和睾丸癌的一个致病因素,但病因仍很大程度上未知。微缺失和微重复导致隐睾症、不育和睾丸肿瘤。尽管 缺失或过表达在小鼠中导致精子发生失败,但 影响睾丸功能的机制尚不清楚。本研究表明,缺失 小鼠发生隐睾症,伴严重提睾肌缺陷和生殖细胞进行性丧失,导致不育,极少数情况下发生睾丸肿瘤。据推测,生殖细胞耗竭是由于 WNT4 水平升高所致。为了验证这一假说,分析了缺失 和 的双缺失小鼠模型的表型。双缺失小鼠具有生育能力。这一发现表明,生殖细胞的维持依赖于 对 的抑制作用,支持 在生殖细胞存活中的作用。将来,由于 拷贝数变异导致隐睾症和精子发生失败的男性中 的表达调节,可能为改善其精子发生,也许在隐睾固定术后提高其生育能力提供一种新方法。

相似文献

1
E2F1 regulates testicular descent and controls spermatogenesis by influencing WNT4 signaling.
Development. 2021 Jan 13;148(1):dev191189. doi: 10.1242/dev.191189.
3
E2F1 controls germ cell apoptosis during the first wave of spermatogenesis.
Andrology. 2015 Sep;3(5):1000-14. doi: 10.1111/andr.12090.
5
Loss of WNT4 in the gubernaculum causes unilateral cryptorchidism and fertility defects.
Development. 2022 Dec 1;149(23). doi: 10.1242/dev.201093. Epub 2022 Nov 30.
7
Ghrelin modulates testicular damage in a cryptorchid mouse model.
PLoS One. 2017 May 18;12(5):e0177995. doi: 10.1371/journal.pone.0177995. eCollection 2017.
8
Surgery-induced cryptorchidism induces apoptosis and autophagy of spermatogenic cells in mice.
Zygote. 2019 Apr;27(2):101-110. doi: 10.1017/S096719941900011X. Epub 2019 Mar 19.
10
Spermatogenesis in cryptorchidism.
Methods Mol Biol. 2012;825:127-47. doi: 10.1007/978-1-61779-436-0_11.

引用本文的文献

1
The role of E2F1 in promoting EIF4EBP1 transcription in cryptorchid mice: association with autophagy in germ cells.
Front Genet. 2025 May 23;16:1536672. doi: 10.3389/fgene.2025.1536672. eCollection 2025.
3
transcriptomic analysis of spermatocytes in non-obstructive azoospermia reveals senescence-like states in arrested spermatocytes.
Genes Dis. 2024 Jan 3;12(1):101205. doi: 10.1016/j.gendis.2024.101205. eCollection 2025 Jan.
4
Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression.
EMBO J. 2024 Oct;43(19):4197-4227. doi: 10.1038/s44318-024-00203-4. Epub 2024 Aug 19.
5
Gubernaculum and Epididymo-Testicular Descent: Review of the Literature.
Acta Med Litu. 2022;29(2):201-210. doi: 10.15388/Amed.2022.29.2.6. Epub 2022 Jun 29.
6
RAD51 and Infertility: A Review and Case-Control Study.
Biochem Genet. 2024 Apr;62(2):1216-1230. doi: 10.1007/s10528-023-10469-8. Epub 2023 Aug 10.
7
Transcriptional Differences in Identical Twins With Different Reproductive Capacities: A Case Report.
Cureus. 2023 Jun 23;15(6):e40847. doi: 10.7759/cureus.40847. eCollection 2023 Jun.
8
Loss of WNT4 in the gubernaculum causes unilateral cryptorchidism and fertility defects.
Development. 2022 Dec 1;149(23). doi: 10.1242/dev.201093. Epub 2022 Nov 30.
9
Early Gonadal Development and Sex Determination in Mammal.
Int J Mol Sci. 2022 Jul 6;23(14):7500. doi: 10.3390/ijms23147500.
10
Retinoblastoma-E2F Transcription Factor Interplay Is Essential for Testicular Development and Male Fertility.
Front Endocrinol (Lausanne). 2022 May 19;13:903684. doi: 10.3389/fendo.2022.903684. eCollection 2022.

本文引用的文献

1
Persistent Müllerian Duct Syndrome: A Rare But Important Etiology of Inguinal Hernia and Cryptorchidism.
Sex Dev. 2019;13(5-6):264-270. doi: 10.1159/000510466. Epub 2020 Sep 19.
2
Male infertility and genitourinary birth defects: there is more than meets the eye.
Fertil Steril. 2020 Aug;114(2):209-218. doi: 10.1016/j.fertnstert.2020.06.042.
3
Disorganization of claudin-11 and dysfunction of the blood-testis barrier during puberty in a cryptorchid rat model.
Andrology. 2020 Sep;8(5):1398-1408. doi: 10.1111/andr.12788. Epub 2020 Apr 13.
4
Insight on multiple morphological abnormalities of sperm flagella in male infertility: what is new?
Asian J Androl. 2020 May-Jun;22(3):236-245. doi: 10.4103/aja.aja_53_19.
7
Histopathology of Unilateral Cryptorchidism.
Pediatr Dev Pathol. 2019 Jan-Feb;22(1):53-58. doi: 10.1177/1093526618789300. Epub 2018 Jul 16.
8
Murine model indicates 22q11.2 signaling adaptor is a dosage-sensitive regulator of genitourinary development.
Proc Natl Acad Sci U S A. 2017 May 9;114(19):4981-4986. doi: 10.1073/pnas.1619523114. Epub 2017 Apr 24.
9
Copy number variations of : a new genetic risk factor for testicular cancer.
Endocr Relat Cancer. 2017 Mar;24(3):119-125. doi: 10.1530/ERC-16-0514. Epub 2017 Jan 19.
10
Mast cells, estrogens, and cryptorchidism: A histological based review.
Transl Androl Urol. 2012 Jun;1(2):97-102. doi: 10.3978/j.issn.2223-4683.2012.06.03.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验