Suppr超能文献

基于 runoff election 的决策方法,用于人工神经网络的训练和推断过程。

Run-off election-based decision method for the training and inference process in an artificial neural network.

机构信息

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

出版信息

Sci Rep. 2021 Jan 13;11(1):895. doi: 10.1038/s41598-020-79452-2.

Abstract

Generally, the decision rule for classifying unstructured data in an artificial neural network system depends on the sequence results of an activation function determined by vector-matrix multiplication between the input bias signal and the analog synaptic weight quantity of each node in a matrix array. Although a sequence-based decision rule can efficiently extract a common feature in a large data set in a short time, it can occasionally fail to classify similar species because it does not intrinsically consider other quantitative configurations of the activation function that affect the synaptic weight update. In this work, we implemented a simple run-off election-based decision rule via an additional filter evaluation to mitigate the confusion from proximity of output activation functions, enabling the improved training and inference performance of artificial neural network system. Using the filter evaluation selected via the difference among common features of classified images, the recognition accuracy achieved for three types of shoe image data sets reached ~ 82.03%, outperforming the maximum accuracy of ~ 79.23% obtained via the sequence-based decision rule in a fully connected single layer network. This training algorithm with an independent filter can precisely supply the output class in the decision step of the fully connected network.

摘要

一般来说,在人工神经网络系统中对非结构化数据进行分类的决策规则取决于激活函数的序列结果,该激活函数由输入偏置信号与矩阵数组中每个节点的模拟突触权重量之间的向量-矩阵乘法决定。虽然基于序列的决策规则可以在短时间内有效地从大数据集中提取常见特征,但它偶尔会无法对相似物种进行分类,因为它没有内在地考虑影响突触权重更新的激活函数的其他定量配置。在这项工作中,我们通过附加的滤波器评估实现了一种简单的径流选举决策规则,以减轻来自输出激活函数接近的混淆,从而提高人工神经网络系统的训练和推理性能。通过对分类图像的常见特征之间的差异选择滤波器评估,三种鞋类图像数据集的识别准确率达到了82.03%,优于全连接单层网络中通过基于序列的决策规则获得的79.23%的最高准确率。具有独立滤波器的这种训练算法可以在全连接网络的决策步骤中精确地提供输出类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff51/7806707/c0ef8c6bef22/41598_2020_79452_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验