Suppr超能文献

计算流体动力学在增强型气管生物反应器设计和长段移植物再细胞化中的应用。

Computational fluid dynamics for enhanced tracheal bioreactor design and long-segment graft recellularization.

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.

Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.

出版信息

Sci Rep. 2021 Jan 13;11(1):1187. doi: 10.1038/s41598-020-80841-w.

Abstract

Successful re-epithelialization of de-epithelialized tracheal scaffolds remains a challenge for tracheal graft success. Currently, the lack of understanding of the bioreactor hydrodynamic environment, and its relation to cell seeding outcomes, serve as major obstacles to obtaining viable tracheal grafts. In this work, we used computational fluid dynamics to (a) re-design the fluid delivery system of a trachea bioreactor to promote a spatially uniform hydrodynamic environment, and (b) improve the perfusion cell seeding protocol to promote homogeneous cell deposition. Lagrangian particle-tracking simulations showed that low rates of rotation provide more uniform circumferential and longitudinal patterns of cell deposition, while higher rates of rotation only improve circumferential uniformity but bias cell deposition proximally. Validation experiments with human bronchial epithelial cells confirm that the model accurately predicts cell deposition in low shear stress environments. We used the acquired knowledge from our particle tracking model, as a guide for long-term tracheal repopulation studies. Cell repopulation using conditions resulting in low wall shear stress enabled enhanced re-epithelialization of long segment tracheal grafts. While our work focuses on tracheal regeneration, lessons learned in this study, can be applied to culturing of any tissue engineered tubular scaffold.

摘要

成功实现去上皮化气管支架的再上皮化仍然是气管移植物成功的挑战。目前,对生物反应器流体动力学环境及其与细胞播种结果的关系缺乏了解,是获得可行的气管移植物的主要障碍。在这项工作中,我们使用计算流体动力学(a)重新设计气管生物反应器的流体输送系统,以促进空间均匀的流体动力学环境,(b)改进灌注细胞播种方案,以促进均匀的细胞沉积。拉格朗日粒子跟踪模拟表明,较低的旋转速度提供了更均匀的圆周和纵向细胞沉积模式,而较高的旋转速度仅提高圆周均匀性,但使细胞沉积偏向近端。用人支气管上皮细胞进行的验证实验证实,该模型准确预测了低剪切应力环境下的细胞沉积。我们利用从粒子跟踪模型中获得的知识,作为长期气管再殖研究的指导。使用导致低壁剪切应力的条件进行细胞再殖,可增强长段气管移植物的再上皮化。虽然我们的工作重点是气管再生,但从这项研究中获得的经验教训可以应用于任何组织工程管状支架的培养。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/897b/7807076/063f7a619c3f/41598_2020_80841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验