Suppr超能文献

评估选择性激光烧结的患者特异性可生物降解设备的方向依赖性,以改进预测建模和设计验证。

Evaluating Directional Dependency of Selective Laser Sintered Patient Specific Biodegradable Devices to Improve Predictive Modeling and Design Verification.

机构信息

Department of Biomedical Engineering and Center for 3D Medical Fabrication (3DMedFab), Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Ann Biomed Eng. 2021 Sep;49(9):2579-2589. doi: 10.1007/s10439-021-02835-7. Epub 2021 Jul 21.

Abstract

Additive manufacturing, or 3D printing, of the bioresorbable polymer [Formula: see text]-polycaprolactone (PCL) is an emerging tissue engineering solution addressing patient specific anatomies. Predictively modeling the mechanical behavior of 3D printed parts comprised of PCL improves the ability to develop patient specific devices that meet design requirements while reducing the testing of extraneous design variants and development time for emergency devices. Predicting mechanical behavior of 3D-printed devices is limited by the variability of effective material moduli that are determined in part by the 3D printing manufacturing process. Powder fusion methods, specifically laser sintering, are known to produce parts with internal porosity ultimately impacting the mechanical performance of printed devices. This study investigates the role of print direction and part size on the material and structural properties of laser sintered PCL parts. Solid PCL cylinders were printed in the XY (perpendicular to laser) and Z direction (parallel to laser), scanned using microcomputed tomography, and mechanically tested under compression. Compositional, structural, and functional properties of the printed parts were evaluated with differential scanning calorimetry, gel permeation chromatography, microcomputed tomography, and mechanical testing. Computational models of printed and scanned cylinders were fit to experimental data to derive effective moduli. Effective moduli were used to predict the mechanical behavior of splints used for emergency repair of severe tracheobronchomalacia. Laser sintering did not cause significant differences in polymer material properties compared to unmanufactured powder. Effective moduli (E) were greater for larger part sizes (p < 0.01) and for parts oriented in the XY direction compared to the Z direction (p < 0.001). These dependencies were congruent with the differences in void volumes associated with the print direction (p < 0.01) and part size (p < 0.01). Finite element models of splint parallel compression tests utilizing the E dependent on print direction and size agreed with experimental closed compression tests of splints. Evaluating the microstructural properties of printed parts and selecting effective moduli for finite element models based on manufacturing parameters allows accurate prediction of device performance. These findings allow testing of a greater number of device design variants in silico to accomodate patient specific anatomies towards providing higher quality parts while lowering overall time and costs of manufacturing and testing.

摘要

增材制造,又称 3D 打印,是一种新兴的组织工程解决方案,可以解决特定于患者的解剖结构问题。对由聚己内酯(PCL)组成的 3D 打印部件的机械行为进行预测性建模,可以提高开发符合设计要求的患者特定设备的能力,同时减少对无关设计变体的测试,并缩短紧急设备的开发时间。预测 3D 打印设备的机械行为受到有效材料模量变化的限制,而这些变化在一定程度上取决于 3D 打印制造工艺。众所周知,粉末融合方法(特别是激光烧结)会产生具有内部孔隙的零件,最终会影响打印设备的机械性能。本研究调查了打印方向和零件尺寸对激光烧结 PCL 零件的材料和结构性能的影响。在 XY 方向(垂直于激光)和 Z 方向(平行于激光)打印实心 PCL 圆柱体,使用微计算机断层扫描进行扫描,并在压缩下进行机械测试。使用差示扫描量热法、凝胶渗透色谱法、微计算机断层扫描和机械测试评估打印零件的组成、结构和功能特性。对打印和扫描圆柱体的计算模型进行拟合,以从实验数据中得出有效模量。有效模量用于预测用于紧急修复严重气管支气管软化症的夹板的机械行为。与未制造粉末相比,激光烧结对聚合物材料性能没有显著影响。较大的零件尺寸(p<0.01)和在 XY 方向上取向的零件的有效模量(E)大于在 Z 方向上取向的零件(p<0.001)。这些依赖性与与打印方向(p<0.01)和零件尺寸(p<0.01)相关的空隙体积差异一致。利用与打印方向和尺寸相关的 E 对夹板平行压缩试验的有限元模型与夹板闭合压缩试验的实验结果吻合较好。评估打印零件的微观结构特性,并根据制造参数选择有限元模型的有效模量,可以准确预测设备性能。这些发现允许在计算机上测试更多数量的设备设计变体,以适应特定于患者的解剖结构,从而提供更高质量的零件,同时降低制造和测试的总体时间和成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验