一种减少服务不足人群中不明原因疼痛差异的算法方法。

An algorithmic approach to reducing unexplained pain disparities in underserved populations.

机构信息

Department of Computer Science, Stanford University, Stanford, CA, USA.

Microsoft Research, Cambridge, MA, USA.

出版信息

Nat Med. 2021 Jan;27(1):136-140. doi: 10.1038/s41591-020-01192-7. Epub 2021 Jan 13.

Abstract

Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.

摘要

服务不足的人群经历更高水平的疼痛。即使在控制了像骨关节炎这样的疾病的客观严重程度之后,这些差异仍然存在,这些疾病是由人类医生使用医学图像来分级的,这增加了服务不足的患者的疼痛可能源于膝关节以外的因素,如压力。在这里,我们使用深度学习方法来衡量骨关节炎的严重程度,通过使用膝关节 X 光片来预测患者的疼痛体验。我们表明,这种方法大大减少了疼痛方面未解释的种族差异。与由放射科医生分级的严重程度的标准衡量标准相比,该方法解释了疼痛方面 43%的差异,或者解释了 4.7 倍(95%置信区间(CI),3-11.8 倍)的差异,对于低收入和受教育程度较低的患者也有类似的结果。这表明,服务不足的患者的大部分疼痛源于膝关节内的因素,而这些因素在严重程度的标准放射学测量中并未反映出来。我们表明,算法减少未解释的差异的能力源于训练集的种族和社会经济多样性。由于算法严重程度衡量标准更好地捕捉了服务不足的患者的疼痛,并且严重程度衡量标准会影响治疗决策,因此算法预测可能会纠正关节置换等治疗方法的获取方面的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索