Suppr超能文献

人工智能能否揭示下一代具有重大影响的骨基因组学靶点?

Can AI reveal the next generation of high-impact bone genomics targets?

作者信息

Greene Casey S, Gignoux Christopher R, Subirana-Granés Marc, Pividori Milton, Hicks Stephanie C, Ackert-Bicknell Cheryl L

机构信息

Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA.

Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

Bone Rep. 2025 Mar 24;25:101839. doi: 10.1016/j.bonr.2025.101839. eCollection 2025 Jun.

Abstract

Genetic studies have revealed hundreds of loci associated with bone-related phenotypes, including bone mineral density (BMD) and fracture risk. However, translating discovered loci into effective new therapies remains challenging. We review success stories including PCSK9-related drugs in cardiovascular disease and evidence supporting the use of human genetics to guide drug discovery, while highlighting advances in artificial intelligence and machine learning with the potential to improve target discovery in skeletal biology. These strategies are poised to improve how we integrate diverse data types, from genetic and electronic health records data to single-cell profiles and knowledge graphs. Such emerging computational methods can position bone genomics for a future of more precise, effective treatments, ultimately improving the outcomes for patients with common and rare skeletal disorders.

摘要

基因研究已经揭示了数百个与骨骼相关表型相关的基因座,包括骨矿物质密度(BMD)和骨折风险。然而,将发现的基因座转化为有效的新疗法仍然具有挑战性。我们回顾了成功案例,包括心血管疾病中与前蛋白转化酶枯草溶菌素9(PCSK9)相关的药物,以及支持利用人类遗传学指导药物研发的证据,同时强调人工智能和机器学习在骨骼生物学中改善靶点发现方面的进展。这些策略有望改进我们整合各种数据类型的方式,从基因和电子健康记录数据到单细胞图谱和知识图谱。此类新兴的计算方法能够为骨骼基因组学带来一个更精确、有效治疗的未来,最终改善常见和罕见骨骼疾病患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ed2/11986539/4a53738d2c20/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验