Lausecker Clément, Salem Bassem, Baillin Xavier, Chaix-Pluchery Odette, Roussel Hervé, Labau Sébastien, Pelissier Bernard, Appert Estelle, Consonni Vincent
Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, 38000 Grenoble, France.
Université Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP, LTM, 38054 Grenoble, France.
Inorg Chem. 2021 Feb 1;60(3):1612-1623. doi: 10.1021/acs.inorgchem.0c03086. Epub 2021 Jan 14.
The controlled incorporation of dopants like copper into ZnO nanowires (NWs) grown by chemical bath deposition (CBD) is still challenging despite its critical importance for the development of piezoelectric devices. In this context, the effects of the addition of copper nitrate during the CBD of ZnO NWs grown on Au seed layers are investigated in detail, where zinc nitrate and hexamethylenetetramine are used as standard chemical precursors and ammonia as an additive to tune the pH. By combining thermodynamic simulations with chemical and structural analyses, we show that copper oxide nanocrystals simultaneously form with ZnO NWs during the CBD process in the low-pH region associated with large supersaturation of Cu species. The Cu(II) and Zn(II) speciation diagrams reveal that both species show very similar behaviors, as they predominantly form either X ions (with X = Cu or Zn) or X(NH) ion complexes, depending on the pH value. Owing to their similar ionic structures, Cu and Cu(NH) ions preferentially formed in the low- and high-pH regions, respectively, are able to compete with the corresponding Zn and Zn(NH) ions to adsorb on the plane top facets of ZnO NWs despite repulsive electrostatic interactions, yielding the significant incorporation of Cu. At the highest pH value, additional attractive electrostatic interactions between the Cu(NH) ion complexes and negatively charged plane top facets further enhance the incorporation of Cu into ZnO NWs. The present findings provide a deep insight into the physicochemical processes at work during the CBD of ZnO NWs following the addition of copper nitrate, as well as a detailed analysis of the incorporation mechanisms of Cu into ZnO NWs, which are considered beyond the only electrostatic forces usually driving the incorporation of dopants such as Al and Ga.
尽管将铜等掺杂剂可控地掺入通过化学浴沉积(CBD)生长的氧化锌纳米线(NWs)对压电器件的发展至关重要,但这仍然具有挑战性。在此背景下,详细研究了在生长于金种子层上的氧化锌纳米线的化学浴沉积过程中添加硝酸铜的影响,其中硝酸锌和六亚甲基四胺用作标准化学前驱体,氨用作调节pH值的添加剂。通过将热力学模拟与化学和结构分析相结合,我们表明在与铜物种的大过饱和度相关的低pH区域的化学浴沉积过程中,氧化铜纳米晶体与氧化锌纳米线同时形成。铜(II)和锌(II)的物种形成图表明,这两种物种表现出非常相似的行为,因为它们主要根据pH值形成X离子(X = Cu或Zn)或X(NH)离子络合物。由于它们相似的离子结构,分别在低pH和高pH区域优先形成的铜和铜(NH)离子能够与相应的锌和锌(NH)离子竞争,尽管存在排斥性静电相互作用,但仍能吸附在氧化锌纳米线的平面顶面上,从而实现铜的大量掺入。在最高pH值下,铜(NH)离子络合物与带负电荷的平面顶面之间额外的吸引性静电相互作用进一步增强了铜掺入氧化锌纳米线的过程。本研究结果深入洞察了添加硝酸铜后氧化锌纳米线化学浴沉积过程中的物理化学过程,以及铜掺入氧化锌纳米线的掺入机制的详细分析,这些机制被认为不仅仅是通常驱动铝和镓等掺杂剂掺入的唯一静电力。