Shiels Oisin J, Kelly P D, Bright Cameron C, Poad Berwyck L J, Blanksby Stephen J, da Silva Gabriel, Trevitt Adam J
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.
Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
J Am Soc Mass Spectrom. 2021 Feb 3;32(2):537-547. doi: 10.1021/jasms.0c00386. Epub 2021 Jan 14.
A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N-containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl), and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the , , and positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios, and reaction efficiencies are measured. The rate coefficients increase from to positions. The second-order rate coefficients can be sorted into three groups: low, between 1 and 3 × 10 cm molecule s (3Anl and 4Anl); intermediate, between 5 and 15 × 10 cm molecule s (2Bzn, 3Bzn, and 4Bzn); and high, between 8 and 31 × 10 cm molecule s (2Anl, 2Pyr, 3Pyr, and 4Pyr); and 2Anl is the only radical cation with a rate coefficient distinctly different from its isomers. Quantum chemical calculations, using M06-2X-D3(0)/6-31++G(2df,p) geometries and DSD-PBEP86-NL/aug-cc-pVQZ energies, are deployed to rationalize reactivity trends based on the stability of prereactive complexes. The G3X-K method guides the assignment of product ions following adduct formation. The rate coefficient trend can be rationalized by a simple model based on the prereactive complex forward barrier height.
气相多环芳烃(PAH)形成过程中的一个关键步骤涉及乙炔(或其他炔烃)加成到σ型芳基自由基上,连续加成会生成更复杂的多环芳烃。含氮芳烃也可能发生类似过程。在寒冷的弥散环境中,如星际介质,当σ型自由基带电时,自由基加成速率可能会提高。本文研究了乙炔与源自吡啶鎓(Pyr)、苯胺鎓(Anl)和苄腈鎓(Bzn)离子的九种芳香性双自由基阳离子的气相离子 - 分子反应。每种情况研究三种异构体(自由基位点分别位于、和位置)。使用室温离子阱,测量了二级速率系数、产物分支比和反应效率。速率系数从位置到位置增加。二级速率系数可分为三组:低,介于1和3×10 cm³分子⁻¹ s⁻¹之间(3Anl和4Anl);中等,介于5和15×10 cm³分子⁻¹ s⁻¹之间(2Bzn、3Bzn和4Bzn);高,介于8和31×10 cm³分子⁻¹ s⁻¹之间(2Anl、2Pyr、3Pyr和4Pyr);并且2Anl是唯一一种速率系数与其异构体明显不同的自由基阳离子。使用M06 - 2X - D3(0)/6 - 31++G(2df,p)几何构型和DSD - PBEP86 - NL/aug - cc - pVQZ能量进行量子化学计算,以基于反应前配合物的稳定性来合理化反应性趋势。G3X - K方法指导加合物形成后产物离子的归属。速率系数趋势可以通过基于反应前配合物正向势垒高度的简单模型来合理化。