Park Hyeonjin, Ma Gamaliel Junren, Yoon Bo Kyeong, Cho Nam-Joon, Jackman Joshua A
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
Langmuir. 2021 Jan 26;37(3):1306-1314. doi: 10.1021/acs.langmuir.0c03396. Epub 2021 Jan 14.
Protein adsorption onto nanomaterial surfaces is important for various nanobiotechnology applications such as biosensors and drug delivery. Within this scope, there is growing interest to develop alumina- and silica-based nanomaterial vaccine adjuvants and an outstanding need to compare protein adsorption onto alumina- and silica-based nanomaterial surfaces. Herein, using alumina- and silica-coated arrays of silver nanodisks with plasmonic properties, we conducted localized surface plasmon resonance (LSPR) experiments to evaluate real-time adsorption of bovine serum albumin (BSA) protein onto alumina and silica surfaces. BSA monomers and oligomers were prepared in different water-ethanol mixtures and both adsorbing species consistently showed quicker adsorption kinetics and more extensive adsorption-related spreading on alumina surfaces as compared to on silica surfaces. We rationalized these experimental observations in terms of the electrostatic forces governing protein-surface interactions on the two nanomaterial surfaces and the results support that more rigidly attached BSA protein-based coatings can be formed on alumina-based nanomaterial surfaces. Collectively, the findings in this study provide fundamental insight into protein-surface interactions at nanomaterial interfaces and can help to guide the development of protein-based coatings for medical and biotechnology applications such as vaccines.
蛋白质在纳米材料表面的吸附对于各种纳米生物技术应用(如生物传感器和药物递送)而言至关重要。在此范围内,开发基于氧化铝和二氧化硅的纳米材料疫苗佐剂的兴趣日益浓厚,并且迫切需要比较蛋白质在基于氧化铝和二氧化硅的纳米材料表面上的吸附情况。在此,我们使用具有等离子体特性的氧化铝和二氧化硅包覆的银纳米盘阵列,进行了局域表面等离子体共振(LSPR)实验,以评估牛血清白蛋白(BSA)蛋白在氧化铝和二氧化硅表面上的实时吸附情况。BSA单体和寡聚体在不同的水 - 乙醇混合物中制备,与在二氧化硅表面相比,两种吸附物种在氧化铝表面上均始终表现出更快的吸附动力学以及与吸附相关的更广泛铺展。我们根据控制两种纳米材料表面上蛋白质 - 表面相互作用的静电力对这些实验观察结果进行了合理解释,结果支持可以在基于氧化铝的纳米材料表面上形成更牢固附着的基于BSA蛋白的涂层。总体而言,本研究中的发现为纳米材料界面处的蛋白质 - 表面相互作用提供了基本见解,并有助于指导用于疫苗等医学和生物技术应用的基于蛋白质的涂层的开发。