Teixeira Alfredo, Silva Severiano R, Hasse Marianne, Almeida José M H, Dias Luis
Mountain Research Centre (CIMO), Escola Superior Agrária/Instituto Politécnico de Bragança, Campus Sta Apolónia Apt 1172, 5301-855 Bragança, Portugal.
Veterinary and Animal Research Centre (CECAV), Universidade Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
Foods. 2021 Jan 12;10(1):143. doi: 10.3390/foods10010143.
This work presents an analytical methodology to predict meat juiciness (discriminant semi-quantitative analysis using groups of intervals of intramuscular fat) and intramuscular fat (regression analysis) in Longissimus thoracis et lumborum (LTL) muscle of Bísaro pigs using as independent variables the animal carcass weight and parameters from color and image analysis. These are non-invasive and non-destructive techniques which allow development of rapid, easy and inexpensive methodologies to evaluate pork meat quality in a slaughterhouse. The proposed predictive supervised multivariate models were non-linear. Discriminant mixture analysis to evaluate meat juiciness by classified samples into three groups-0.6 to 1.1%; 1.25 to 1.5%; and, greater than 1.5%. The obtained model allowed 100% of correct classifications (92% in cross-validation with seven-folds with five repetitions). Polynomial support vector machine regression to determine the intramuscular fat presented R and RMSE values of 0.88 and 0.12, respectively in cross-validation with seven-folds with five repetitions. This quantitative model (model's polynomial kernel optimized to degree of three with a scale factor of 0.1 and a cost value of one) presented R and RSE values of 0.999 and 0.04, respectively. The overall predictive results demonstrated the relevance of photographic image and color measurements of the muscle to evaluate the intramuscular fat, rarther than the usual time-consuming and expensive chemical analysis.
这项研究提出了一种分析方法,用于预测比萨罗猪胸腰段最长肌(LTL)中的肉多汁性(使用肌内脂肪区间组进行判别半定量分析)和肌内脂肪(回归分析),将动物胴体重量以及颜色和图像分析参数作为自变量。这些是非侵入性和非破坏性技术,能够开发出快速、简便且经济的方法,在屠宰场评估猪肉品质。所提出的预测性监督多元模型是非线性的。通过将样本分为三组(0.6%至1.1%;1.25%至1.5%;以及大于1.5%)来进行判别混合分析以评估肉多汁性。所获得的模型实现了100%的正确分类(在七折交叉验证且重复五次的情况下为92%)。用于确定肌内脂肪的多项式支持向量机回归在七折交叉验证且重复五次的情况下,R值和均方根误差(RMSE)分别为0.88和0.12。这个定量模型(模型的多项式核优化到三次,比例因子为0.1,代价函数值为1)的R值和相对标准误差(RSE)分别为0.999和0.04。总体预测结果表明,肌肉的摄影图像和颜色测量对于评估肌内脂肪具有相关性,而不是通常耗时且昂贵的化学分析。