Suppr超能文献

基于无监督机器学习的纳米级荧光细胞外囊泡聚类。

Unsupervised Machine Learning-Based Clustering of Nanosized Fluorescent Extracellular Vesicles.

机构信息

Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium.

Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.

出版信息

Small. 2021 Feb;17(5):e2006786. doi: 10.1002/smll.202006786. Epub 2021 Jan 15.

Abstract

Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease.

摘要

细胞外囊泡 (EV) 是一种在细胞间通讯中发挥重要作用的生物纳米颗粒。EV 群体的表型特征是疾病的有前途的报告者,具有直接的临床诊断相关性。然而,由于其固有的异质性,对 EV 生物标志物含量进行定量的稳健方法一直严重缺乏,并且需要采用单颗粒方法。在这里,使用多色单分子爆发分析显微镜来检测单个 EV 上存在的多个生物标志物。作者对记录的信号进行分类,并应用基于机器学习的 t 分布随机邻域嵌入算法对所得多维数据进行聚类。作为原理验证,作者使用该方法评估 EV 的纯度和炎症状态,并比较通过不同纯化方法分离的细胞培养物和血浆衍生的 EV。然后,该方法用于鉴定由炎症内皮细胞释放的细胞间黏附分子-1 特异性 EV 亚群,并证明载脂蛋白-a1 是鉴定血浆中典型脂蛋白污染的优秀标志物。该方法可以广泛应用于标准共聚焦显微镜,从而允许对患者血浆 EV 制剂进行标准化质量评估,并在健康和疾病中对多个 EV 生物标志物进行诊断分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验