Suppr超能文献

污水处理厂中氮磷去除的监督控制组态设计。

Supervisory control configurations design for nitrogen and phosphorus removal in wastewater treatment plants.

机构信息

Department of Chemical Engineering, National Institute of Technology, Warangal, India.

出版信息

Water Environ Res. 2021 Aug;93(8):1289-1302. doi: 10.1002/wer.1512. Epub 2021 Feb 7.

Abstract

Model predictive control (MPC) and Fuzzy controllers are designed in a two-level hierarchical supervisory control framework for control of activated sludge-based wastewater treatment plants (WWTP) in order to efficiently remove nitrogen and phosphorus. Benchmark simulation model No.3 with a bio-phosphorus (ASM3bioP) module is used as a working platform. The hierarchical control framework is used to alter the dissolved oxygen in the seventh reactor (DO ) to control ammonia. Lower-level PI, MPC, and Fuzzy are used to control the nitrate levels in the fourth reactor (S ) by manipulating internal recycle (Q ) and DO in the seventh tank by manipulating mass transfer coefficient (K a ). MPC and Fuzzy are designed in the supervisory layer to alter the DO set-point based on the ammonia composition in the seventh reactor (NH ). From the analysis, it is observed that the effluent quality is improved with a decrease in ammonia, TN, and TP. Though a little difference was observed in the cost for all the control strategies, a trade-off is maintained between cost and percentage improvement of effluent quality. MPC-MPC combination showed significant removal in ammonia and better effluent quality when compared to other control strategies. PRACTITIONER POINTS: Developed novel strategies in hierarchical configurations for better nutrient removal with optimal costs in an A O process. Lower level control strategies deals with dissolved oxygen in last aeration tank and nitrate in fourth anoxic tank (PI/MPC) Higher level control strategy deals with ammonia in the last aeration tank (MPC/Fuzzy). Average and violations of nutrient removal, economy and overall effluent quality for three weather conditions (Dry, Rain and Strom) are studied. A trade-off is observed between EQI and OCI.

摘要

模型预测控制 (MPC) 和模糊控制器设计为两级分层监督控制框架,用于控制基于活性污泥的废水处理厂 (WWTP),以有效地去除氮和磷。使用具有生物磷 (ASM3bioP) 模块的基准模拟模型 No.3 作为工作平台。分层控制框架用于改变第七个反应器中的溶解氧 (DO) 以控制氨。下层的 PI、MPC 和模糊控制用于通过操纵内部回流 (Q) 和第七个罐中的 DO 来控制第四个反应器 (S) 中的硝酸盐水平,通过操纵传质系数 (K a)。MPC 和模糊控制设计在监督层中,根据第七个反应器中的氨成分 (NH) 改变 DO 设定点。从分析中可以看出,氨、TN 和 TP 的减少提高了出水质量。尽管所有控制策略的成本略有差异,但在成本和出水质量提高百分比之间保持了权衡。与其他控制策略相比,MPC-MPC 组合在去除氨和改善出水质量方面表现出显著效果。

实践者要点

在 AO 工艺中,以分层配置开发了用于更好地去除营养物并以最佳成本运行的新型策略。

下层控制策略处理最后一个曝气池中的溶解氧和第四个缺氧池中的硝酸盐(PI/MPC)

上层控制策略处理最后一个曝气池中的氨(MPC/Fuzzy)。

研究了三种天气条件(干燥、降雨和暴风雨)下营养物去除、经济性和整体出水质量的平均值和违规情况。

EQI 和 OCI 之间存在权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验