Suppr超能文献

不同生长介质中噬菌体 LUZ19 感染过程的差异转录谱分析。

Differential transcription profiling of the phage LUZ19 infection process in different growth media.

机构信息

Centre of Biological Engineering, University of Minho, Braga, Portugal.

Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.

出版信息

RNA Biol. 2021 Nov;18(11):1778-1790. doi: 10.1080/15476286.2020.1870844. Epub 2021 Jan 15.

Abstract

RNA sequencing of phage-infected bacterial cultures offers a snapshot of transcriptional events occurring during the infection process, providing insights into the phage transcriptional organization as well as the bacterial response. To better mimic real environmental contexts, we performed RNA-seq of PAO1 cultures infected with phage LUZ19 in a mammalian cell culture medium to better simulate a phage therapy event and the data were compared to lysogeny broth medium. Regardless of the media, phage LUZ19 induces significant transcriptional changes in the bacterial host over time, particularly during early infection ( = 5 min) and gradually shuts down bacterial transcription. In a common response in both media, 56 PAO1 genes are differentially transcribed and clustered into several functional categories such as metabolism, translation and transcription. Our data allowed us to tease apart a medium-specific response during infection from the identified infection-associated responses. This reinforces the concept that phages overtake bacterial transcriptome in a strict manner to gain control of the bacterial machinery and reallocate resources for infection, in this case overcoming the nutritional limitations of the mammalian cell culture medium. From a phage therapy perspective, this study contributes towards a better understanding of phage-host interaction in human physiological conditions and demonstrates the versatility of phage LUZ19 to adapt to different environments.

摘要

对噬菌体感染的细菌培养物进行 RNA 测序可以提供感染过程中发生的转录事件的快照,深入了解噬菌体的转录组织以及细菌的反应。为了更好地模拟真实的环境背景,我们在哺乳动物细胞培养基中对 PAO1 培养物进行了 LUZ19 噬菌体的 RNA-seq 实验,以更好地模拟噬菌体治疗事件,并将数据与 lysogeny broth medium 进行了比较。无论使用哪种培养基,噬菌体 LUZ19 都会随着时间的推移诱导细菌宿主发生显著的转录变化,特别是在早期感染(=5 分钟)时,并逐渐关闭细菌转录。在两种培养基中都存在的一种常见反应中,56 个 PAO1 基因的转录水平存在差异,并聚类为几个功能类别,如代谢、翻译和转录。我们的数据使我们能够将感染过程中的特定培养基反应与已识别的感染相关反应区分开来。这进一步证实了噬菌体以严格的方式接管细菌转录组以控制细菌机制并重新分配感染资源的概念,在这种情况下,噬菌体克服了哺乳动物细胞培养基的营养限制。从噬菌体治疗的角度来看,本研究有助于更好地了解人类生理条件下噬菌体-宿主相互作用,并展示了 LUZ19 噬菌体适应不同环境的多功能性。

相似文献

1
Differential transcription profiling of the phage LUZ19 infection process in different growth media.
RNA Biol. 2021 Nov;18(11):1778-1790. doi: 10.1080/15476286.2020.1870844. Epub 2021 Jan 15.
2
A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19.
mBio. 2013 Mar 19;4(2):e00061-13. doi: 10.1128/mBio.00061-13.
3
Introducing differential RNA-seq mapping to track the early infection phase for phage ɸKZ.
RNA Biol. 2021 Aug;18(8):1099-1110. doi: 10.1080/15476286.2020.1827785. Epub 2020 Oct 25.
7
Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus.
J Virol. 2014 Sep;88(18):10501-10. doi: 10.1128/JVI.01347-14. Epub 2014 Jun 25.
10
Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features.
mSystems. 2023 Apr 27;8(2):e0118922. doi: 10.1128/msystems.01189-22. Epub 2023 Feb 16.

引用本文的文献

1
Virocell resource manipulation under nutrient limitation.
mSystems. 2025 Jul 22;10(7):e0052125. doi: 10.1128/msystems.00521-25. Epub 2025 Jun 24.
2
Deciphering the Causes of IbfA-Mediated Abortive Infection in the P22-like Phage UAB_Phi20.
Int J Mol Sci. 2025 May 20;26(10):4918. doi: 10.3390/ijms26104918.
4
Depletion of mA-RNA in reduces the infectious potential of T5 bacteriophage.
Microbiol Spectr. 2024 Oct 18;12(12):e0112424. doi: 10.1128/spectrum.01124-24.
5
Warming alters life-history traits and competition in a phage community.
Appl Environ Microbiol. 2024 May 21;90(5):e0028624. doi: 10.1128/aem.00286-24. Epub 2024 Apr 16.
6
Obtaining Detailed Phage Transcriptomes Using ONT-Cappable-Seq.
Methods Mol Biol. 2024;2793:207-235. doi: 10.1007/978-1-0716-3798-2_14.
7
Refining the transcriptional landscapes for distinct clades of virulent phages infecting .
Microlife. 2024 Feb 28;5:uqae002. doi: 10.1093/femsml/uqae002. eCollection 2024.
8
Exploring the transcriptional landscape of phage-host interactions using novel high-throughput approaches.
Curr Opin Microbiol. 2024 Feb;77:102419. doi: 10.1016/j.mib.2023.102419. Epub 2024 Jan 24.
9
Protist impacts on marine cyanovirocell metabolism.
ISME Commun. 2022 Oct 1;2(1):94. doi: 10.1038/s43705-022-00169-6.
10
A systematic review of the use of bacteriophages for in vitro biofilm control.
Eur J Clin Microbiol Infect Dis. 2023 Aug;42(8):919-928. doi: 10.1007/s10096-023-04638-1. Epub 2023 Jul 5.

本文引用的文献

1
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant Acinetobacter baumannii.
mSystems. 2019 Apr 16;4(2). doi: 10.1128/mSystems.00068-19. eCollection 2019 Mar-Apr.
3
Overview on the Bacterial Iron-Riboflavin Metabolic Axis.
Front Microbiol. 2018 Jul 5;9:1478. doi: 10.3389/fmicb.2018.01478. eCollection 2018.
4
Transcriptomic Analysis of the Response to T4-Like Phage NCTC 12673 Infection.
Viruses. 2018 Jun 16;10(6):332. doi: 10.3390/v10060332.
5
Transcriptome analysis of a Pseudomonas aeruginosasn-glycerol-3-phosphate dehydrogenase mutant reveals a disruption in bioenergetics.
Microbiology (Reading). 2018 Apr;164(4):551-562. doi: 10.1099/mic.0.000646. Epub 2018 Mar 13.
6
Transcriptome Analysis of a Bloom-Forming Cyanobacterium during Ma-LMM01 Phage Infection.
Front Microbiol. 2018 Jan 19;9:2. doi: 10.3389/fmicb.2018.00002. eCollection 2018.
7
Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
Microbiology (Reading). 2018 Feb;164(2):205-216. doi: 10.1099/mic.0.000594. Epub 2018 Jan 2.
8
Effect of bacterial growth rate on bacteriophage population growth rate.
Microbiologyopen. 2018 Apr;7(2):e00558. doi: 10.1002/mbo3.558. Epub 2017 Dec 1.
9
Pseudomonas predators: understanding and exploiting phage-host interactions.
Nat Rev Microbiol. 2017 Sep;15(9):517-530. doi: 10.1038/nrmicro.2017.61. Epub 2017 Jun 26.
10
Energetic cost of building a virus.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4324-E4333. doi: 10.1073/pnas.1701670114. Epub 2017 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验