Suppr超能文献

飞秒时间分辨显微镜研究超高声振动频率下的纳米颗粒与流体相互作用

Nanoparticle-Fluid Interactions at Ultrahigh Acoustic Vibration Frequencies Studied by Femtosecond Time-Resolved Microscopy.

作者信息

Yu Kuai, Yang Yang, Wang Junzhong, Hartland Gregory V, Wang Guo Ping

机构信息

Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

出版信息

ACS Nano. 2021 Jan 26;15(1):1833-1840. doi: 10.1021/acsnano.0c09840. Epub 2021 Jan 15.

Abstract

Liquid viscous and viscoelastic properties are very important parameters in determining rheological phenomena. Mechanical resonators with extremely high vibrational frequencies interacting with simple liquids present a wide range of applications from mass sensing to biomechanics. However, a lack of understanding of fluid viscoelasticity greatly hinders the utilization of mechanical resonators. In this paper, the high frequency acoustic vibrations of Au nanoplates with large quality factors were used to probe fluid properties (water, glycerol, and their mixtures) through time-resolved pump-probe microscopy experiments. For water, viscous damping was clearly observed, where an inviscid effect was only detected previously. Adding glycerol to the water increases the fluid viscosity and leads to a bulk viscoelastic response in the system. The experimental results are in excellent agreement with a continuum mechanics model for the damping of nanoplate breathing modes in liquids, confirming the experimental observation of viscoelastic effects. In addition to the breathing modes of the nanoplates, Brillouin oscillations are observed in the experiments. Analysis of the frequency of the Brillouin oscillations also shows the presence of viscoelastic effects in the high-viscosity solvents. The detection and analysis of viscous damping in liquids is important not only for understanding the energy dissipation mechanisms and providing the mechanical relaxation times of the liquids but also for developing applications of nanomechanical resonators for fluid environments.

摘要

液体的粘性和粘弹性特性是决定流变现象的非常重要的参数。具有极高振动频率的机械谐振器与简单液体相互作用,呈现出从质量传感到生物力学等广泛的应用。然而,对流体粘弹性的缺乏了解极大地阻碍了机械谐振器的利用。在本文中,利用具有高品质因数的金纳米板的高频声振动,通过时间分辨泵浦 - 探测显微镜实验来探测流体性质(水、甘油及其混合物)。对于水,清楚地观察到粘性阻尼,而之前仅检测到无粘效应。向水中添加甘油会增加流体粘度,并导致系统中的体粘弹性响应。实验结果与液体中纳米板呼吸模式阻尼的连续介质力学模型非常吻合,证实了粘弹性效应的实验观察。除了纳米板的呼吸模式外,在实验中还观察到布里渊振荡。对布里渊振荡频率的分析也表明在高粘度溶剂中存在粘弹性效应。检测和分析液体中的粘性阻尼不仅对于理解能量耗散机制和提供液体的机械弛豫时间很重要,而且对于开发用于流体环境的纳米机械谐振器的应用也很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验