College of Physical Science and Technology, Xiamen University, Xiamen, China.
Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou, China.
Nat Commun. 2023 Jan 30;14(1):485. doi: 10.1038/s41467-023-36127-6.
The gigahertz acoustic vibration of nano-optomechanical systems plays an indispensable role in all-optical manipulation of light, quantum control of mechanical modes, on-chip data processing, and optomechanical sensing. However, the high optical, thermal, and mechanical energy losses severely limit the development of nano-optomechanical metasurfaces. Here, we demonstrated a high-quality 5 GHz optoacoustic vibration and ultrafast optomechanical all-optical manipulation in a sub-5 nm tip-supported nano-optomechanical metasurface (TSNOMS). The physical rationale is that the design of the semi-suspended metasurface supported by nanotips of <5 nm enhances the optical energy input into the metasurface and closes the mechanical and thermal output loss channels, result in dramatically improvement of the optomechanical conversion efficiency and oscillation quality of the metasurface. The design strategy of a multichannel-loss-mitigating semi-suspended metasurface can be generalized to performance improvements of on-chip processed nano-optomechanical systems. Applications include all-optical operation of nanomechanical systems, reconfigurable nanophotonic devices, optomechanical sensing, and nonlinear and self-adaptive photonic functionalities.
太赫兹声学振动在光的全光学操控、机械模式的量子控制、片上数据处理和光机械传感等方面发挥着不可或缺的作用。然而,高光学、热学和机械能量损耗严重限制了纳米光学机械超表面的发展。在这里,我们在亚 5nm 针尖支撑的纳米光学机械超表面(TSNOMS)中展示了高质量的 5GHz 光声振动和超快光机械全光学操控。其物理原理是,由 <5nm 纳米针尖支撑的半悬浮超表面设计增强了超表面的光能量输入,并关闭了机械和热输出损耗通道,从而极大地提高了超表面的光机械转换效率和振动质量。多通道损耗缓解半悬浮超表面的设计策略可以推广到片上处理的纳米光学机械系统的性能提升。应用包括纳米机械系统的全光学操作、可重构纳米光子器件、光机械传感以及非线性和自适应光子功能。