Jiang Meiling, Song Shichao, Li Yijie, Zeng Xianzhi, Zhu Linwei, Zhang Mingsi, Wang Shuai, Li Xiangping, Cao Yaoyu
Opt Lett. 2021 Jan 15;46(2):356-359. doi: 10.1364/OL.413302.
Here, we demonstrate a flat nanofocalizer for converging light field into a uniform subwavelength light spot array based on the fractional Talbot effect by developing a direct laser writing technique with 3D fabrication precision. The fractional Talbot effect endows the device with the merits of high compression ratio and modular design capability for transforming a plane wave into arrayed light focal spots. By combining a synergistic laser printing technique, we introduce a buffer layer for improving the fabrication precision of structural height in favor of accurately manipulating the phase delay. For a given light wavelength at 750 nm, by precisely producing a nanofocalizer consisting of periodic unit elements with the dimensions of 300()×600()×585(), we have achieved 5×6 light spot array with modular design, while the full width at half-maximum of a single focused light spot can be reduced to ∼0.82. Our research may pave the way for realizing subwavelength optical devices capable of being readily integrated to existing optical systems.
在此,我们通过开发具有三维制造精度的直接激光写入技术,展示了一种基于分数塔尔博特效应的平面纳米聚焦器,用于将光场汇聚成均匀的亚波长光斑阵列。分数塔尔博特效应赋予该器件高压缩比和将平面波转换为阵列光焦点的模块化设计能力等优点。通过结合协同激光打印技术,我们引入了一个缓冲层,以提高结构高度的制造精度,有利于精确控制相位延迟。对于750nm的给定光波长,通过精确制造由尺寸为300()×600()×585()的周期性单元元件组成的纳米聚焦器,我们实现了具有模块化设计的5×6光斑阵列,而单个聚焦光斑的半高宽可减小至约0.82。我们的研究可能为实现能够轻松集成到现有光学系统中的亚波长光学器件铺平道路。