Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
Curr Hematol Malig Rep. 2021 Feb;16(1):112-116. doi: 10.1007/s11899-020-00602-4. Epub 2021 Jan 15.
High-dimensional flow cytometry experiments have become a method of choice for high-throughput integration and characterization of cell populations. Here, we present a summary of state-of-the-art R-based pipelines used for differential analyses of cytometry data, largely based on chimeric antigen receptor (CAR) T cell therapies. These pipelines are based on publicly available R libraries, put together in a systematic and functional fashion, therefore free of cost.
In recent years, existing tools tailored to analyze complex high-dimensional data such as single-cell RNA sequencing (scRNAseq) have been successfully ported to cytometry studies due to the similar nature of flow cytometry and scRNAseq platforms. Existing environments like Cytobank (Kotecha et al., 2010), FlowJo (FlowJo™ Software) and FCS Express (https://denovosoftware.com) already offer a variety of these ported tools, but they either come at a premium or are fairly complicated to manage by an inexperienced user. To mitigate these limitations, experienced cytometrists and bioinformaticians usually incorporate these functions into an RShiny (https://shiny.rstudio.com) application that ultimately offers a user-friendly, intuitive environment that can be used to analyze flow cytometry data. Computational tools and Shiny-based tools are the perfect answer to the ever-growing dimensionality and complexity of flow cytometry data, by offering a dynamic, yet user-friendly exploratory space, tailored to bridge the space between the lab experimental world and the computational, machine learning space.
高维流式细胞术实验已成为高通量整合和细胞群体特征分析的首选方法。在这里,我们总结了基于嵌合抗原受体(CAR)T 细胞疗法的用于流式细胞术数据分析的最先进的基于 R 的管道,这些管道基于公开可用的 R 库,以系统和功能的方式组合在一起,因此是免费的。
近年来,由于流式细胞术和单细胞 RNA 测序(scRNAseq)平台的相似性质,针对分析复杂高维数据(如 scRNAseq)的现有工具已成功移植到流式细胞术研究中。Cytobank(Kotecha 等人,2010 年)、FlowJo(FlowJo™Software)和 FCS Express(https://denovosoftware.com)等现有环境已经提供了多种这些移植工具,但它们要么需要付费,要么对于没有经验的用户来说管理起来相当复杂。为了缓解这些限制,经验丰富的细胞仪技术人员和生物信息学家通常将这些功能整合到 RShiny(https://shiny.rstudio.com)应用程序中,最终提供了一个用户友好、直观的环境,可用于分析流式细胞术数据。计算工具和基于 Shiny 的工具是流式细胞术数据不断增加的维度和复杂性的完美解决方案,提供了一个动态但用户友好的探索空间,旨在弥合实验室实验世界和计算、机器学习空间之间的差距。