Ujas Thomas A, Obregon-Perko Veronica, Stowe Ann M
Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA.
FlowJo, BD Life Sciences-Biosciences, Ashland, OR, USA.
Methods Mol Biol. 2023;2616:231-249. doi: 10.1007/978-1-0716-2926-0_18.
Flow cytometry has been used for the last two decades to identify which immune cell subsets diapedese from the periphery into the brain parenchyma following injuries, including ischemic and hemorrhagic stroke. Recent developments have moved the analysis of high-parameter flow cytometry data sets from the traditional analysis method of manual gating to using unbiased analyses to improve scientific rigor. This chapter gives a step-by-step guide on using modern computational approaches to analyze complex flow cytometry data sets in FlowJo™ Software v10. The section will describe pre-processing and outline the steps needed to perform unsupervised clustering of your data set in addition to using nonlinear dimensionality reduction for visualizing your analysis. While these methods can identify long-term neuroinflammatory responses after stroke, the methods could be applied to a variety of flow cytometry data sets.
在过去二十年中,流式细胞术一直被用于识别损伤(包括缺血性和出血性中风)后从外周渗入脑实质的免疫细胞亚群。最近的进展已将高参数流式细胞术数据集的分析从传统的手动设门分析方法转变为使用无偏分析,以提高科学严谨性。本章提供了在FlowJo™软件v10中使用现代计算方法分析复杂流式细胞术数据集的分步指南。本节将描述预处理,并概述对数据集进行无监督聚类以及使用非线性降维来可视化分析所需的步骤。虽然这些方法可以识别中风后的长期神经炎症反应,但这些方法可应用于各种流式细胞术数据集。