Yang L X, Rohde G, Hanff K, Stange A, Xiong R, Shi J, Bauer M, Rossnagel K
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
Phys Rev Lett. 2020 Dec 31;125(26):266402. doi: 10.1103/PhysRevLett.125.266402.
Impulsive optical excitation generally results in a complex nonequilibrium electron and lattice dynamics that involves multiple processes on distinct timescales, and a common conception is that for times shorter than about 100 fs the gap in the electronic spectrum is not seriously affected by lattice vibrations. Here, however, by directly monitoring the photoinduced collapse of the spectral gap in a canonical charge-density-wave material, the blue bronze Rb_{0.3}MoO_{3}, we find that ultrafast (∼60 fs) vibrational disordering due to efficient hot-electron energy dissipation quenches the gap significantly faster than the typical structural bottleneck time corresponding to one half-cycle oscillation (∼315 fs) of the coherent charge-density-wave amplitude mode. This result not only demonstrates the importance of incoherent lattice motion in the photoinduced quenching of electronic order, but also resolves the perennial debate about the nature of the spectral gap in a coupled electron-lattice system.
脉冲光激发通常会导致复杂的非平衡电子和晶格动力学,其中涉及不同时间尺度上的多个过程,并且一个普遍的观点是,对于短于约100飞秒的时间,电子光谱中的能隙不会受到晶格振动的严重影响。然而,在这里,通过直接监测典型电荷密度波材料蓝青铜Rb₀.₃MoO₃中光致能隙的坍缩,我们发现由于高效的热电子能量耗散导致的超快(约60飞秒)振动无序化使能隙淬灭的速度明显快于对应于相干电荷密度波振幅模式的半个周期振荡(约315飞秒)的典型结构瓶颈时间。这一结果不仅证明了非相干晶格运动在电子序的光致淬灭中的重要性,还解决了关于耦合电子-晶格系统中能隙性质的长期争论。