Suppr超能文献

铋中原子运动的电子加速与无序化

Electronic acceleration of atomic motions and disordering in bismuth.

作者信息

Sciaini Germán, Harb Maher, Kruglik Sergei G, Payer Thomas, Hebeisen Christoph T, zu Heringdorf Frank-J Meyer, Yamaguchi Mariko, Horn-von Hoegen Michael, Ernstorfer Ralph, Miller R J Dwayne

机构信息

Institute for Optical Sciences and Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada.

出版信息

Nature. 2009 Mar 5;458(7234):56-9. doi: 10.1038/nature07788.

Abstract

The development of X-ray and electron diffraction methods with ultrahigh time resolution has made it possible to map directly, at the atomic level, structural changes in solids induced by laser excitation. This has resulted in unprecedented insights into the lattice dynamics of solids undergoing phase transitions. In aluminium, for example, femtosecond optical excitation hardly affects the potential energy surface of the lattice; instead, melting of the material is governed by the transfer of thermal energy between the excited electrons and the initially cold lattice. In semiconductors, in contrast, exciting approximately 10 per cent of the valence electrons results in non-thermal lattice collapse owing to the antibonding character of the conduction band. These different material responses raise the intriguing question of how Peierls-distorted systems such as bismuth will respond to strong excitations. The evolution of the atomic configuration of bismuth upon excitation of its A(1g) lattice mode, which involves damped oscillations of atoms along the direction of the Peierls distortion of the crystal, has been probed, but the actual melting of the material has not yet been investigated. Here we present a femtosecond electron diffraction study of the structural changes in crystalline bismuth as it undergoes laser-induced melting. We find that the dynamics of the phase transition depend strongly on the excitation intensity, with melting occurring within 190 fs (that is, within half a period of the unperturbed A(1g) lattice mode) at the highest excitation. We attribute the surprising speed of the melting process to laser-induced changes in the potential energy surface of the lattice, which result in strong acceleration of the atoms along the longitudinal direction of the lattice and efficient coupling of this motion to an unstable transverse vibrational mode. That is, the atomic motions in crystalline bismuth can be electronically accelerated so that the solid-to-liquid phase transition occurs on a sub-vibrational timescale.

摘要

具有超高时间分辨率的X射线和电子衍射方法的发展,使得在原子水平上直接绘制由激光激发引起的固体结构变化成为可能。这为深入了解经历相变的固体的晶格动力学带来了前所未有的见解。例如,在铝中,飞秒光激发几乎不影响晶格的势能面;相反,材料的熔化是由受激电子与初始冷晶格之间的热能传递所控制的。相比之下,在半导体中,激发约10%的价电子会由于导带的反键特性而导致非热晶格崩塌。这些不同的材料响应引发了一个有趣的问题:像铋这样的佩尔斯畸变系统对强激发会有怎样的响应。人们已经探究了铋在其A(1g)晶格模式激发时原子构型的演变,该模式涉及原子沿晶体佩尔斯畸变方向的阻尼振荡,但尚未对材料的实际熔化进行研究。在此,我们展示了一项关于结晶铋在激光诱导熔化过程中结构变化的飞秒电子衍射研究。我们发现,相变动力学强烈依赖于激发强度,在最高激发下,熔化在190飞秒内发生(即,在未受扰动的A(1g)晶格模式的半个周期内)。我们将熔化过程的惊人速度归因于激光诱导的晶格势能面变化,这导致原子沿晶格纵向方向的强烈加速以及该运动与不稳定横向振动模式的有效耦合。也就是说,结晶铋中的原子运动可以通过电子方式加速,从而使固液相变在亚振动时间尺度上发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验