Ortiz Jimenez Valery, Pham Yen Thi Hai, Zhou Da, Liu Mingzu, Nugera Florence Ann, Kalappattil Vijaysankar, Eggers Tatiana, Hoang Khang, Duong Dinh Loc, Terrones Mauricio, Rodriguez Gutiérrez Humberto, Phan Manh-Huong
Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
Adv Sci (Weinh). 2024 Feb;11(7):e2304792. doi: 10.1002/advs.202304792. Epub 2023 Dec 10.
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS , V-WSe ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe /WS , VSe /MoS ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
利用光来操控二维稀磁半导体(2D-DMSs)中的磁化强度,特别是在磁掺杂过渡金属二硫属化物(TMD)单层(M掺杂的TX,其中M = V、Fe和Cr;T = W、Mo;X = S、Se和Te)中,可能会在自旋电子学、自旋热电子学、谷电子学和量子计算等领域带来创新性应用。这篇观点论文探讨了在环境条件下二维TMD DMSs和异质结构中光对磁化强度的调控作用。通过将磁光液晶共振(MLCR)实验与密度泛函理论(DFT)计算相结合,我们表明在V掺杂的TMD单层(例如,V-WS、V-WSe)中,光可以增强磁化强度。这种现象归因于导带和价带中的过量空穴以及被困在磁掺杂态的载流子,它们介导了半导体层的磁化。在二维TMD异质结构(VSe/WS、VSe/MoS)中,展示了近邻效应、电荷转移和限制效应在放大光介导磁性方面的重要性。我们将此归因于TMD层对光子的吸收,从而产生介导异质结构磁化的电子-空穴对。这些发现将鼓励二维磁性领域的进一步研究,并建立具有光学可调磁功能的二维TMDs和异质结构的新颖设计,为下一代磁光纳米器件铺平道路。
Nanomaterials (Basel). 2023-2-18
Sci Adv. 2017-7-26
ACS Appl Mater Interfaces. 2021-7-21
Langmuir. 2025-3-11
Adv Sci (Weinh). 2024-11
Nat Commun. 2023-6-24
Nat Nanotechnol. 2023-7
Nanomaterials (Basel). 2023-2-18
Nano Lett. 2022-12-28
Adv Mater. 2023-12
Nat Commun. 2022-10-10
J Phys Chem Lett. 2022-9-29
Nat Mater. 2022-12