Yang Yang, Liu Qidong, Yue Dong, Han Qing-Long
IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1791-1802. doi: 10.1109/TNNLS.2020.3045026. Epub 2022 Apr 4.
This article is concerned with bipartite tracking for a class of nonlinear multiagent systems under a signed directed graph, where the followers are with unknown virtual control gains. In the predictor-based neural dynamic surface control (NDSC) framework, a bipartite tracking control strategy is proposed by the introduction of predictors and the minimal number of learning parameters (MNLPs) technology along with the graph theory. Different from the traditional NDSC, the predictor-based NDSC utilizes prediction errors to update the neural network for improving system transient performance. The MNLPs technology is employed to avoid the problem of "explosion of learning parameters". It is proved that all closed-loop signals steered by the proposed control strategy are bounded, and the system achieves bipartite consensus. Simulation results verify the efficiency and effectiveness of the strategy.
本文研究了有向符号图下一类非线性多智能体系统的二分跟踪问题,其中跟随者的虚拟控制增益未知。在基于预测器的神经动态面控制(NDSC)框架下,通过引入预测器、最小学习参数数量(MNLPs)技术以及图论,提出了一种二分跟踪控制策略。与传统的NDSC不同,基于预测器的NDSC利用预测误差来更新神经网络,以提高系统的瞬态性能。采用MNLPs技术来避免“学习参数爆炸”问题。证明了所提出的控制策略所引导的所有闭环信号都是有界的,并且系统实现了二分一致性。仿真结果验证了该策略的有效性和实用性。