Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
J Control Release. 2021 Mar 10;331:164-175. doi: 10.1016/j.jconrel.2021.01.013. Epub 2021 Jan 12.
The development of nanomaterials to induce antigen-specific immune tolerance has shown promise for treating autoimmune diseases. While PEGylation has been widely used to reduce host immune responses to nanomaterials, its tolerogenic potential has not been reported. Here, we report for the first time that a subcutaneous injection of PEGylated poly(lactide-co-glycolide) (PLGA) nanoparticles containing auto-antigen peptide MOG without any tolerogenic drugs is sufficient to dramatically ameliorate symptoms after disease onset in an antigen-specific manner in a mouse model of multiple sclerosis. Neither free MOG nor particles without PEG exhibit this efficacy. Interestingly, mechanistic studies indicate that PEGylation of nanoparticles does not reduce dendritic cell activation through direct nanoparticle-cell interactions. Instead, PEGylated nanoparticles induce lower complement activation, neutrophil recruitment, and co-stimulatory molecule expression on dendritic cells around the injection sitecompared to non-PEGylated PLGA nanoparticles, creating a more tolerogenic microenvironment in vivo. We further demonstrate that the locally recruited dendritic cells traffic to lymphoid organs to induce T cell tolerance. These results highlight the critical role of surface properties of nanomaterials in inducing immune tolerance via subcutaneous administration.
纳米材料诱导抗原特异性免疫耐受的发展在治疗自身免疫性疾病方面显示出了前景。虽然聚乙二醇化(PEGylation)已被广泛用于降低宿主对纳米材料的免疫反应,但它的免疫耐受潜力尚未被报道。在这里,我们首次报道了一种皮下注射载有自身抗原肽 MOG 的聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒,在多发性硬化症的小鼠模型中,即使没有任何免疫耐受药物,这种纳米颗粒也足以在疾病发病后特异性地显著改善症状。游离的 MOG 或没有 PEG 的颗粒都没有这种效果。有趣的是,机制研究表明,纳米颗粒的聚乙二醇化不会通过直接的纳米颗粒-细胞相互作用来降低树突状细胞的激活。相反,与非聚乙二醇化的 PLGA 纳米颗粒相比,聚乙二醇化的纳米颗粒在注射部位周围诱导的树突状细胞补体激活、中性粒细胞募集和共刺激分子表达更低,从而在体内创造了一个更具免疫耐受的微环境。我们进一步证明,局部募集的树突状细胞迁移到淋巴器官诱导 T 细胞耐受。这些结果强调了纳米材料表面特性通过皮下给药诱导免疫耐受的关键作用。